(2004•廣州)已知拋物線y=(m+1)x2-2mx+m(m為整數(shù))經(jīng)過點A(1,1),頂點為P,且與x軸有兩個不同的交點.
(1)判斷點P是否在線段OA上(O為坐標原點),并說明理由;
(2)設該拋物線與x軸的兩個交點的橫坐標分別為x1、x2,且x1<x2,是否存在實數(shù)m,使x1<m<x2?若存在,請求出m的取值范圍;若不存在,請說明理由.
【答案】分析:(1)本題可先表示出P點的坐標,根據(jù)拋物線與x軸有兩個交點,令y=0,那么得出的一元二次方程應該有兩個實數(shù)根,即△>0(且m≠-1),由此可得出m的取值范圍.然后用m的取值范圍來判斷P點是否在線段OA上即可;
(2)由于x1<m<x2,那么(x1-m)(x2-m)<0,可根據(jù)一元二次方程根與系數(shù)的關系,來求出此時m的取值范圍.
解答:解:(1)點P不在線段OA上,
理由:∵拋物線與x軸有兩個交點,
∴方程(m+1)x2-2mx+m=0(*)有兩個實數(shù)根,
∴△=4m2-4m(m+1)>0,
又∵m+1≠0,
∴m<0,且m≠-1.
根據(jù)題意可知:P點的坐標為(,),
因此分兩種情況進行討論:
①當-1<m<0時,m+1>0,<0,點P在第三象限,此時點P不在線段OA上;
②當m<-1時,m+1<0,>0,點P在第一象限,
-1=>0,
>1
∴點P不在線段OA.綜上所述,點P不在線段OA上;
(2)存在實數(shù)m滿足x1<m<x2,由于x1,x2是方程(*)的兩個不相等的根,
因此x1+x2=,x1•x2=
(x1-m)(x2-m)=x1•x2-m (x1+x2)+m2=-+m2=,
∵x1<m<x2
∴(x1-m)(x2-m)<0,
<0,
又因為m<0,且m≠-1,
∴m的取值范圍是:-1<m<0.
點評:本題主要考查了二次函數(shù)與一元二次方程的關系、一元二次方程根與系數(shù)的關系等知識,要注意本題中待定系數(shù)的范圍不確定,因此要分類討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•廣州)已知拋物線y=(m+1)x2-2mx+m(m為整數(shù))經(jīng)過點A(1,1),頂點為P,且與x軸有兩個不同的交點.
(1)判斷點P是否在線段OA上(O為坐標原點),并說明理由;
(2)設該拋物線與x軸的兩個交點的橫坐標分別為x1、x2,且x1<x2,是否存在實數(shù)m,使x1<m<x2?若存在,請求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次根式》(04)(解析版) 題型:解答題

(2004•廣州)已知-1<a<0,化簡|a+1|-

查看答案和解析>>

科目:初中數(shù)學 來源:2004年廣東省廣州市中考數(shù)學試卷(解析版) 題型:解答題

(2004•廣州)國際能源機構(IEA)2004年1月公布的《石油市場報告》預測,2004年中國石油年耗油量將在2003年的基礎上繼續(xù)增加,最多可達3億噸,將成為全球第二大石油消耗大國.已知2003年中國石油年耗油量約為2.73億噸,若一年按365天計,石油的平均日耗油量以桶為單位(1噸約合7.3桶),則2004年中國石油的平均日耗油量在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源:2004年廣東省廣州市中考數(shù)學試卷(解析版) 題型:解答題

(2004•廣州)已知-1<a<0,化簡|a+1|-

查看答案和解析>>

同步練習冊答案