【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D.

(1)求證:AC平分∠DAB;

(2)若CD=4,AD=8,試求⊙O的半徑.

【答案】(1)見解析;(2)5

【解析】分析:(1)、連接OC,根據(jù)切線以及等腰三角形的性質(zhì)得出∠DAC=∠CAB,從而得出角平分線;(2)、OEAD于點(diǎn)E,設(shè)⊙O的半徑為x,根據(jù)題意得出四邊形OEDC是矩形,然后根據(jù)Rt△AOE的勾股定理得出答案.

詳解:(1)證明:如圖1,連接OC, CD是切線,∴OCCD.ADCD,ADOC,

∴∠1=4. OA=OC,∴∠2=4,∴∠1=2,AC平分∠DAB.

(2)解:如圖2,作OEAD于點(diǎn)E,

設(shè)⊙O的半徑為x,ADCD,OEAD, OECD;

由(1),可得ADOC,∴四邊形OEDC是矩形,∴OE=CD=4,AE=AD﹣DE=8﹣x,

42+(8﹣x)2=x2, 80﹣16x+x2=x2解得x=5, ∴⊙O的半徑是5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

①若a+b+c=0,則b2﹣4ac>0;

②若方程兩根為﹣12,則2a+c=0;

③若方程ax2+c=0有兩個不相等的實(shí)根,則方程ax2+bx+c=0必有兩個不相等的實(shí)根;

④若b=2a+c,則方程有兩個不相等的實(shí)根.其中正確的有( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過點(diǎn)A的切線相交于點(diǎn)E.

(1)∠ACB=   °,理由是:   ;

(2)猜想△EAD的形狀,并證明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條直線AB,CD相交于點(diǎn)O,且∠AOC=∠AOD,射線OMOB開始繞O點(diǎn)逆時針方向旋轉(zhuǎn),速度為15°/s,射線ON同時從OD開始繞O點(diǎn)順時針方向旋轉(zhuǎn),速度為12°/s,運(yùn)動時間為t秒(0t12,本題出現(xiàn)的角均小于平角)

1)圖中一定有   個直角;當(dāng)t2時,∠MON的度數(shù)為   ,∠BON的度數(shù)為   ;

2)若OE平分∠COMOF平分∠NOD,當(dāng)∠EOF為直角時,請求出t的值;

3)當(dāng)射線OM在∠COB內(nèi)部,且是定值時,求t的取值范圍,并求出這個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球訓(xùn)練中,為了訓(xùn)練球員快速搶斷轉(zhuǎn)身,教練設(shè)計了折返跑訓(xùn)練.教練在東西方向的足球場上畫了一條直線插上不同的折返旗幟,如果約定向西為正,向東為負(fù),練習(xí)一組的行駛記錄如下(單位:米):+40,-30,+50-25,+25,-30,+15-28,+16-20.

1)球員最后到達(dá)的地方在出發(fā)點(diǎn)的哪個方向?距出發(fā)點(diǎn)多遠(yuǎn)?

2)球員訓(xùn)練過程中,最遠(yuǎn)處離出發(fā)點(diǎn)多遠(yuǎn)?

3)球員在一組練習(xí)過程中,跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張紙片的形狀為直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直線AD折疊該紙片,使直角邊AC與斜邊上的AE重合,則CD的長為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的兩邊OA、OC在坐標(biāo)軸上,且OC=2OA,MN分別為OA、OC的中點(diǎn),BMAN交于點(diǎn)E,若四邊形EMON的面積為2,則經(jīng)過點(diǎn)B的雙曲線的解析式為( 。

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過點(diǎn)A,B,頂點(diǎn)為C,點(diǎn)P(m,n)(n<0)為拋物線上一點(diǎn).

(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);

(2)當(dāng)∠APB為鈍角時,求m的取值范圍;

(3)若m>,當(dāng)∠APB為直角時,將該拋物線向左或向右平移t(0<t<個單位,點(diǎn)C、P平移后對應(yīng)的點(diǎn)分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長最短?若存在,求t的值并說明拋物線平移的方向;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣,0),點(diǎn)B的坐標(biāo)為(0,3).

(1)求過A,B兩點(diǎn)直線的函數(shù)表達(dá)式;

(2)過B點(diǎn)作直線BP與x軸交于點(diǎn)P,且使OP=2OA,求ABP的面積.

查看答案和解析>>

同步練習(xí)冊答案