【題目】已知二次函數(shù)y1=ax2+bx+c(a>0)與一次函數(shù)y2=kx+m的圖象相交于A(﹣1,4)、B(4,2)兩點,則能使關(guān)于x的不等式ax2+(b﹣k)x+c﹣m>0成立的x的取值范圍是( 。
A.2<x<4B.﹣1<x<4C.x<﹣1或x>4D.x>4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時水溫(℃)與開機后用時()成反比例關(guān)系,直至水溫降至30℃,飲水機關(guān)機,飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時接通電源,水溫(℃)與時間()的關(guān)系如圖所示:
(1)分別寫出水溫上升和下降階段與之間的函數(shù)關(guān)系式;
(2)怡萱同學(xué)想喝高于50℃的水,請問她最多需要等待多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn))x4﹣5x2+4=0是一個一元四次方程.
(探索)根據(jù)該方程的特點,通常用“換元法”解方程:
設(shè)x2=y,那么x4= ,于是原方程可變?yōu)?/span> .
解得:y1=1,y2= .
當y=1時,x2=1,∴x=±1;
當y= 時,x2= ,∴x= ;
原方程有4個根,分別是 .
(應(yīng)用)仿照上面的解題過程,求解方程:(x2﹣2x)2+(x2﹣2x)﹣6=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面坐標系xOy中,點A的坐標為(1,0),點P的橫坐標為2,將點A繞點P旋轉(zhuǎn),使它的對應(yīng)點B恰好落在x軸上(不與A點重合);再將點B繞點O逆時針旋轉(zhuǎn)90°得到點C.
(1)直接寫出點B和點C的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=2x2+bx+c.當x=1時,y=4;當x=﹣2,y=﹣5.
(1)求y關(guān)于x的二次函數(shù)的解析式;
(2)在直角坐標系中把(1)中的圖象拋物線平移到頂點與原點重合,應(yīng)該怎樣平移?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)接于⊙,是⊙的直徑,過點作,交的延長線于點,平分.
(1)求證:是⊙的切線;
(2)已知cm,cm,求⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應(yīng)降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長;
(2)當洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com