【題目】已知二次函數(shù)y1ax2+bx+ca0)與一次函數(shù)y2kx+m的圖象相交于A(﹣14)、B4,2)兩點,則能使關(guān)于x的不等式ax2+bkx+cm0成立的x的取值范圍是( 。

A.2x4B.1x4C.x<﹣1x4D.x4

【答案】C

【解析】

根據(jù)題意得出當ax2+bx+ckx+m時,則ax2+b-kx+c-m0,進而結(jié)合函數(shù)圖象得出x的取值范圍.

解:如圖,

∵當ax2+bx+ckx+m時,

ax2+bkx+cm0,

y1y2時,由二次函數(shù)y1ax2+bx+c與一次函數(shù)y2kx+m的圖象相交于A(﹣1,4)、B4,2)兩點,

則由圖象可得出:x<﹣1x4

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時水溫)與開機后用時)成反比例關(guān)系,直至水溫降至30℃,飲水機關(guān)機,飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時接通電源,水溫)與時間)的關(guān)系如圖所示:

1)分別寫出水溫上升和下降階段之間的函數(shù)關(guān)系式;

2)怡萱同學(xué)想喝高于50℃的水,請問她最多需要等待多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn))x45x2+40是一個一元四次方程.

(探索)根據(jù)該方程的特點,通常用換元法解方程:

設(shè)x2y,那么x4   ,于是原方程可變?yōu)?/span>   

解得:y11,y2   

y1時,x21,∴x±1;

y   時,x2   ,∴x   ;

原方程有4個根,分別是   

(應(yīng)用)仿照上面的解題過程,求解方程:(x22x2+x22x)﹣60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面坐標系xOy中,點A的坐標為(1,0),點P的橫坐標為2,將點A繞點P旋轉(zhuǎn),使它的對應(yīng)點B恰好落在x軸上(不與A點重合);再將點B繞點O逆時針旋轉(zhuǎn)90°得到點C

1)直接寫出點B和點C的坐標;

2)求經(jīng)過ABC三點的拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)y2x2+bx+c.當x1時,y4;當x=﹣2y=﹣5

1)求y關(guān)于x的二次函數(shù)的解析式;

2)在直角坐標系中把(1)中的圖象拋物線平移到頂點與原點重合,應(yīng)該怎樣平移?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,的直徑,過點,交的延長線于點,平分.

(1)求證:的切線;

(2)已知cm,cm,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應(yīng)降價多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.

1)求圓弧所在的圓的半徑r的長;

2)當洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?

查看答案和解析>>

同步練習(xí)冊答案