【題目】對(duì)于任意實(shí)數(shù)m、n,定義一種運(yùn)算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運(yùn)算,例如:3※5=3×5﹣3﹣5+3=10.請(qǐng)根據(jù)上述定義解決問題:若a<2※x<7,且解集中有兩個(gè)整數(shù)解,則a的取值范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為( )
①a=,b=,c=; ②a=6,b=8,c=10; ③a=7,b=24,c=25;
④a=2,b=3,c=4.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=﹣x+交坐標(biāo)軸于A、B兩點(diǎn),直線AC與AB關(guān)于y軸對(duì)稱,交x軸于點(diǎn)C.點(diǎn)P、Q分別是線段BC、AC上兩個(gè)動(dòng)點(diǎn),且∠APQ始終等于30°.
(1)點(diǎn)B的坐標(biāo)是( , );∠ABC= 度;
(2)若⊙O與AB相切,則⊙O的半徑等于 ;
(3)當(dāng)P點(diǎn)坐標(biāo)為(﹣2,0)時(shí),求CQ的長(zhǎng);
(4)當(dāng)△APQ為等腰三角形時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用分配律可以得﹣2×6+3×6=(﹣2+3)×6=﹣6.如果a表示任意一個(gè)有理數(shù),那么利用分配律可以得到﹣2a+3a=(____)a=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F.
(1)若AB=4,BC=6,求EC的長(zhǎng);
(2)若∠F=55°,求∠BAE和∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司全體員工年薪的具體情況如下表:
年薪/萬元 | 30 | 14 | 9 | 6 | 4 | 3.5 | 3 |
員工數(shù)/人 | 1 | 1 | 1 | 2 | 7 | 6 | 2 |
則該公司全體員工年薪的平均數(shù)比中位數(shù)多____萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. “打開電視,正在播放河南新聞節(jié)目”是必然事件
B. 某種彩票中獎(jiǎng)概率為10%是指買十張一定有一張中獎(jiǎng)
C. 神舟飛船反射前需要對(duì)零部件進(jìn)行抽樣調(diào)查
D. 了解某種節(jié)能燈的使用壽命適合抽樣調(diào)查
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com