【題目】如圖,△ABC是邊長(zhǎng)為4cm的等邊三角形,AD為BC邊上的高,點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s,點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,若點(diǎn)P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為x(s).
(l)求x為何值時(shí),PQ⊥AC;x為何值時(shí),PQ⊥AB?
(2)當(dāng)O<x<2時(shí),AD是否能平分△PQD的面積?若能,說(shuō)出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫(xiě)出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫(xiě)出過(guò)程).
【答案】(1)當(dāng)x=(Q在AC上)時(shí),PQ⊥AC;x=時(shí)PQ⊥AB;(2)AD平分△PQD的面積;(3)當(dāng)x=或時(shí),以PQ為直徑的圓與AC相切,當(dāng)0≤x<或<x<或<x≤4時(shí),以PQ為直徑的圓與AC相交.
【解析】
試題分析:(1)若使PQ⊥AC,則根據(jù)路程=速度×時(shí)間表示出CP和CQ的長(zhǎng),再根據(jù)30度的直角三角形的性質(zhì)列方程求解;
若使PQ⊥AB,則根據(jù)路程=速度×時(shí)間表示出BP,BQ的長(zhǎng),再根據(jù)30度的直角三角形的性質(zhì)列方程求解;
(2)根據(jù)三角形的面積公式,要證明AD平分△PQD的面積,只需證明O是PQ的中點(diǎn).根據(jù)題意可以證明BP=CN,則PD=DN,再根據(jù)平行線等分線段定理即可證明;
(3)根據(jù)(1)中求得的值即可分情況進(jìn)行討論.
試題解析:(1)當(dāng)Q在AB上時(shí),顯然PQ不垂直于AC,
當(dāng)Q在AC上時(shí),由題意得,BP=x,CQ=2x,PC=4-x;
∵AB=BC=CA=4,
∴∠C=60°;
若PQ⊥AC,則有∠QPC=30°,
∴PC=2CQ,
∴4-x=2×2x,
∴x=;
當(dāng)x=(Q在AC上)時(shí),PQ⊥AC;
如圖:①
當(dāng)PQ⊥AB時(shí),BP=x,BQ=x,AC+AQ=2x;
∵AC=4,
∴AQ=2x-4,
∴2x-4+x=4,
∴x=,
故x=時(shí)PQ⊥AB;
(2)過(guò)點(diǎn)QN⊥BC于點(diǎn)N,
當(dāng)0<x<2時(shí),在Rt△QNC中,QC=2x,∠C=60°;
∴NC=x,
∴BP=NC,
∵BD=CD,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴AD∥QN,
∴OP=OQ,
∴S△PDO=S△DQO,
∴AD平分△PQD的面積;
(3)顯然,不存在x的值,使得以PQ為直徑的圓與AC相離,
當(dāng)x=或時(shí),以PQ為直徑的圓與AC相切,
當(dāng)0≤x<或<x<或<x≤4時(shí),以PQ為直徑的圓與AC相交.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(規(guī)律探究題)下表是按一定規(guī)律排列的一列方程,仔細(xì)觀察,大膽猜想,科學(xué)推斷,完成練習(xí).
序號(hào) | 方程 | 方程的解 |
1 | x2-2x-3=0 | x1=-1,x2=3 |
2 | x2-4x-12=0 | x1=-2,x2=6 |
3 | x2-6x-27=0 | x1=-3,x2=9 |
… | … | … |
(1)這列方程中第10個(gè)方程的兩個(gè)根分別是x1=____,x2=____.
(2)這列方程中第n個(gè)方程為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,李老師設(shè)計(jì)了一個(gè)探究杠桿平衡條件的實(shí)驗(yàn):在一個(gè)自制類(lèi)似天平的儀器的左邊固定托盤(pán)A中放置一個(gè)重物,在右邊活動(dòng)托盤(pán)B(可左右移動(dòng))中放置一定質(zhì)量的砝碼,使得儀器左右平衡.改變活動(dòng)托盤(pán)B與點(diǎn)O的距離x(cm),觀察活動(dòng)托盤(pán)B中砝碼的質(zhì)量y(g)的變化情況.實(shí)驗(yàn)數(shù)據(jù)記錄如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)猜測(cè)y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(2)當(dāng)砝碼的質(zhì)量為24g時(shí),活動(dòng)托盤(pán)B與點(diǎn)O的距離是多少?
(3)將活動(dòng)托盤(pán)B往左移動(dòng)時(shí),應(yīng)往活動(dòng)托盤(pán)B中添加還是減少砝碼?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.
(1)當(dāng)銷(xiāo)售單價(jià)為70元時(shí),每天的銷(xiāo)售利潤(rùn)是多少?
(2)求出每天的銷(xiāo)售利潤(rùn)y(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?(每天的總成本=每件的成本×每天的銷(xiāo)售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明到離家2.1千米的學(xué)校參加初三聯(lián)歡會(huì),到學(xué)校時(shí)發(fā)現(xiàn)演出道具還放在家中,此時(shí)距聯(lián)歡會(huì)開(kāi)始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車(chē)返回學(xué)校.已知李明騎自行車(chē)到學(xué)校比他從學(xué)校步行到家用時(shí)少20分鐘,且騎自行車(chē)的速度是步行速度的3倍.
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會(huì)開(kāi)始前趕到學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F。
(1)求證:CE=CF。
(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點(diǎn)E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是A、B、C三島的平面圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西50°方向,從B島看A、C兩島的視角∠ABC是多少度?從C島看A、B兩島的視角∠ACB呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從一個(gè)半徑為1的圓形鐵皮中剪下一個(gè)圓心角為90°的扇形BAC.
(1)求這個(gè)扇形的面積;
(2)若將扇形BAC圍成一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面直徑是多少?能否從最大的余料③中剪出一個(gè)圓做該圓錐的底面?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com