【題目】某廠家以、兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙、丙三種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含千克原料、千克原料;乙產(chǎn)品每袋含千克原料、千克原料;丙產(chǎn)品每袋含有千克原料、千克原料.若丙產(chǎn)品每袋售價元,則利潤率為.某節(jié)慶日,該電商進行促銷活動,將甲、乙、丙各一袋合裝成禮品盒,每購買一個禮品盒可免費贈送一袋乙產(chǎn)品,這樣即可實現(xiàn)利潤率為,則禮盒售價為_____元.

【答案】273

【解析】

設(shè)原料的成本為/千克,原料的成本為/千克,根據(jù)丙產(chǎn)品每袋售價元,則利潤率為可得x+y的值,進而根據(jù)禮盒的利潤為30%列代數(shù)式把x+y的值代入即可得答案.

設(shè)原料的成本為元/千克,原料的成本為元/千克,

根據(jù)題意得:,

解得:,

禮盒的售價為

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.

1)求拋物線的解析式;

2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;

3)過動點PPE垂直于y軸于點E,交直線AC于點D,過點Dx軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQBD交BE于點Q,連接QD.設(shè)PD=x,PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,點ECD上,∠AEB90°,點P從點A出發(fā),沿AEB的路徑勻速運動到點B停止,作PQCD于點Q,設(shè)點P運動的路程為x,PQ長為y,若yx之間的函數(shù)關(guān)系圖象如圖2所示,當x6時,PQ的值是(  )

A. 2B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個口袋中有4個完全相同的小球,把它們分別標上數(shù)字﹣101,2,隨機的摸出一個小球記錄數(shù)字然后放回,在隨機的摸出一個小球記錄數(shù)字.求下列事件的概率:

1)兩次都是正數(shù)的概率PA);

2)兩次的數(shù)字和等于0的概率PB).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,直線,點,點,動點在直線上,動點、軸正半軸上,連接、

1)若點,求直線的解析式;

2)如圖,當周長最小時,連接,求的最小值,并求出此時點的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣2x+4x軸,y軸分別交于點C,A,點D為點B(﹣3,0)關(guān)于AC的對稱點,反比例函數(shù)y的圖象經(jīng)過點D

1)求證:四邊形ABCD為菱形;

2)求反比例函數(shù)的解析式;

3)已知在y的圖象(x0)上一點N,y軸正半軸上一點M,且四邊形ABMN是平行四邊形,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓p(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,pV的變化情況如表所示.

P

1.5

2

2.5

3

4

V

64

48

38.4

32

24

(1)寫出一個符合表格數(shù)據(jù)的p關(guān)于V的函數(shù)解析式   

(2)當氣球內(nèi)的氣壓大于144千帕時,氣球?qū)⒈,依照?/span>1)中的函數(shù)解析式,基于安全考慮,氣球的體積至少為多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A的中點,AEACA,與⊙OCB的延長線交于點F,E,且.

(1)求證:△ADC∽△EBA;

(2)如果AB8,CD5,求tan∠CAD的值.

查看答案和解析>>

同步練習冊答案