【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.
(1)直接寫出ED和EC的數(shù)量關系:_________;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當BC=_______時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是_______.
【答案】ED=EC 2 正方形
【解析】
(1)連結CD,如圖,由圓周角定理得到∠ADC=90°,然后根據(jù)直角三角形斜邊上的中線直線得到DE=CE=BE;
(2)連結OD,如圖,利用切線性質得∠2+∠4=90°,再利用等腰三角形的性質得∠1=∠2,∠3=∠4,所以∠1+∠3=∠2+∠4=90°,于是根據(jù)切線的判定定理可判斷DE是⊙O 的切線;(3)要判斷四邊形AOED是平行四邊形,則DE=OA=1,所以BC=2,當BC=2時,△ACB為等腰直角三角形,則∠B=45°,又可判斷△BCD為等腰直角三角形,于是得到DE⊥BC,DE=BC=1,所以四邊形AOED是平行四邊形;然后利用OD=OC=CE=DE=1,∠OCE=90°,可判斷四邊形OCED為正方形.
(1)連結CD,如圖,
∵AC是⊙O的直徑,
∴∠ADC=90°,
∵E是BC的中點,
∴DE=CE=BE;
(2)DE是⊙O的切線.理由如下:
連結OD,如圖,
∵BC為切線,
∴OC⊥BC,
∴∠OCB=90°,即∠2+∠4=90°,
∵OC=OD,ED=EC,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=∠2+∠4=90°,即∠ODB=90°,
∴OD⊥DE,
∴DE是⊙O的切線;
(3)當BC=2時,
∵CA=CB=2,
∴△ACB為等腰直角三角形,
∴∠B=45°,
∴△BCD為等腰直角三角形,
∴DE⊥BC,DE=BC=1,
∵OA=DE=1,AO∥DE,
∴四邊形AOED是平行四邊形;
∵OD=OC=CE=DE=1,∠OCE=90°,
∴四邊形OCED為正方形.
故答案為ED=EC;2,正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB與x軸交于點A(4,0)、與y軸交于點B(0,3),直線 BD與x軸交于點D,將直線AB沿直線BD翻折,點A恰好落在y軸上的C點,則直線BD對應的函數(shù)關系式為______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結論:
①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE=60°.其中正確的結論個數(shù)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一種動畫程序,在平面直角坐標系屏幕上,直角三角形是黑色區(qū)域(含直角三角形邊界),其中A(1,1),B(2,1),C(1,3),用信號槍沿直線y=3x+b發(fā)射信號,當信號遇到黑色區(qū)域時,區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的b的取值范圍是( )
A.﹣5≤b≤0B.﹣5<b≤﹣3C.﹣5≤b≤3D.﹣5≤b≤5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AG交CD于點H,若∠C=120°,則∠AHD=( 。
A. 120° B. 30° C. 150° D. 60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是△ABC內一點,∠A=80°,BO、CO分別是∠ABC和∠ACB的角平分線,則∠BOC等于( 。
A. 140° B. 120° C. 130° D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角中,,,、的平分線交于點.
(1)求證:;
(2)若的外角平分線以及的平分線交于點,(1)結論是否成立?請在圖中補全圖形,寫出結論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ ABC中,AB = AC
(1)如圖 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,則∠EDC =
(2)如圖 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,則∠EDC =
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關系?請用式子表示:
(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關系?如有,請你寫出來,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過點A(0,2).
(1)若點(﹣,0)也在該拋物線上,求a,b滿足的關系式;
(2)若該拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為心,OA為半徑的圓與拋物線的另兩個交點為B,C,且△ABC有一個內角為60°.
①求拋物線的解析式;
②若點P與點O關于點A對稱,且O,M,N三點共線,求證:PA平分∠MPN.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com