【題目】已知:如圖,在ABC中,B=90,ACB=30AB=2,AD=2ACDC=2BC

1)求證:ACD為直角三角形;(2)求四邊形ABCD的面積.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)根據(jù)勾股定理求出BC的長(zhǎng)度,再根據(jù)勾股定理逆定理得出△ACD為直角三角形;

2)根據(jù)四邊形ABCD的面積=ABC的面積+ACD的面積,列式進(jìn)行計(jì)算即可得解.

1)在RtABC中,∵∠ACB=30°,AB=2,∴AC=2AB=4(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半).

RtABC中,∵∠B=90°,∴BC2+AB2=AC2(勾股定理),∴

AD=2ACDC=2BC,∴AD=8,,∴AC2+CD2=16+48=64AD2=64,∴AD2=AC2+CD2,∴△ACD為直角三角形,∠ACD=90°(勾股定理逆定理).

2)∵S四邊形ABCD=SABC+SACD,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小聰將三角尺RtABC繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)到△DEC的位置,其中∠A30°,∠B為直角,若點(diǎn)A、CE在一條直線(xiàn)上,則此次旋轉(zhuǎn)變換中旋轉(zhuǎn)角的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在矩形中,分別是的中點(diǎn),作射線(xiàn),連接.

1)請(qǐng)直接寫(xiě)出線(xiàn)段的數(shù)量關(guān)系;

2)將矩形變?yōu)槠叫兴倪呅危渲?/span>為銳角,如圖(2),,分別是的中點(diǎn),過(guò)點(diǎn)交射線(xiàn)于點(diǎn),交射線(xiàn)于點(diǎn),連接,求證:

3)寫(xiě)出的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在紙面上有一數(shù)軸如圖所示.

嘗試:折疊紙面,使表示1的點(diǎn)與表示的點(diǎn)重合,則表示的點(diǎn)與表示_________的點(diǎn)重合.

發(fā)現(xiàn):折疊紙面,使表示的點(diǎn)與表示3的點(diǎn)重合,則表示5的點(diǎn)與表示____________的點(diǎn)重合.

應(yīng)用:若數(shù)軸上、兩點(diǎn)之間的距離為11左側(cè)),且經(jīng)過(guò)折疊后,表示的點(diǎn)與表示3的點(diǎn)重合,點(diǎn)與點(diǎn)重合,分別求、兩點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),待轉(zhuǎn)盤(pán)自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱(chēng)為轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次(若指針指向兩個(gè)扇形的交線(xiàn),則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),直到指針指向一個(gè)扇形的內(nèi)部為止)

(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,用樹(shù)狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P在等邊ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線(xiàn)段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'C,連接AP',則sinPAP'的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.

(1)已知甲隊(duì)在初賽階段的積分為分,甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);

(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南江縣某鄉(xiāng)兩村盛產(chǎn)鳳柑,村有鳳柑200噸,村有鳳柑300噸.現(xiàn)將這些鳳柑運(yùn)到兩個(gè)冷藏倉(cāng)庫(kù),已知倉(cāng)庫(kù)可儲(chǔ)存240噸,倉(cāng)庫(kù)可儲(chǔ)存260噸;從村運(yùn)往兩處的費(fèi)用分別為每噸20元和25元,從村運(yùn)往兩處的費(fèi)用分別為每噸15元和18元.設(shè)從村運(yùn)往倉(cāng)庫(kù)的鳳柑重量為噸.

(1)請(qǐng)?zhí)顚?xiě)表格(單位:噸)

(2)請(qǐng)分別求出兩村運(yùn)往兩倉(cāng)庫(kù)的鳳柑的運(yùn)輸費(fèi)用(用含的代數(shù)式表示);

(3)當(dāng)時(shí),試求兩村運(yùn)往兩倉(cāng)庫(kù)的鳳柑的運(yùn)輸費(fèi)用.

總計(jì)

200

300

總計(jì)

240

260

500

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣東省茂名市)如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)k為常數(shù),k≠0)的圖象交于點(diǎn)A(﹣1,4)和點(diǎn)Ba,1).

(1)求反比例函數(shù)的表達(dá)式和a、b的值;

(2)若AO兩點(diǎn)關(guān)于直線(xiàn)l對(duì)稱(chēng),請(qǐng)連接AO,并求出直線(xiàn)l與線(xiàn)段AO的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案