【題目】在如圖所示的直角坐標系中,△ABC的頂點坐標分別是A(4,-1)B(1,1),C(14);點是△ABC內(nèi)一點,當點平移到點時.

①請寫出平移后新三個頂點的坐標;

②求的面積.

【答案】1A100),B15,2),C135);(2

【解析】

1)根據(jù)點P平移前后的坐標,可得出平移的規(guī)律,繼而可得出△A1B1C1三個頂點的坐標;

2)利用構(gòu)圖法,求解△A1B1C1的面積.

平移到點

∴平移的規(guī)律為:向右平移4個單位,向上平移1個單位,

A(4,-1)B(1,1)C(1,4),

∴A10,0),B152),C135);

2)∵平行前后圖形不變,

,

SABC=S四邊形ADEF-SADB-SBEC-S△CFA

,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,貴陽市某中學數(shù)學活動小組在學習了“利用三角函數(shù)測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?0°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AB=AC,ADABC的角平分線,DEAB,DFAC,垂足分別為E,F.則下列結(jié)論:AD上任意一點到點C,B的距離相等;AD上任意一點到邊AB,AC的距離相等;BD=CD,ADBC;④∠BDE=CDF.其中正確的個數(shù)為(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:ADBCD,EGBCG,∠E=1,求證:AD平分∠ABC.下面是部分推理過程,請你將其補充完整:

ADBCDEGBC(已知)

∴∠ADC=EGC=90°

EGAD

∴∠E=________ )、

1=__________

又∵∠E=1(已知)

∴∠2=3

AD平分∠BAC (

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知E,F分別是ABCD上的動點,P也為一動點.

1)如圖1,若ABCD,求證:∠P=∠BEP+∠PFD

2)如圖2,若∠P=∠PFD-∠BEP,求證:ABCD;

3)如圖3ABCD,移動E,F使得∠EPF90°,作∠PEG=∠BEP,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.

(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=   °.

(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=   °,∠CDE=   °.

(3)設(shè)∠BAD=α,∠CDE=β猜想α,β之間的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:BE=DF,②∠DAF=15°,AC垂直平分EF,BE+DF=EF,SCEF=2SABE.其中正確結(jié)論有【 】個.

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是邊BC上一點,AP與BD交于點M,DP與AC交于點N.
①若點P為BC的中點,則AM:PM=2:1;
②若點P為BC的中點,則四邊形OMPN的面積是8;
③若點P為BC的中點,則圖中陰影部分的總面積為28;
④若點P在BC的運動,則圖中陰影部分的總面積不變.
其中正確的是 . (填序號即可)

查看答案和解析>>

同步練習冊答案