【題目】下列各式計(jì)算正確的是( 。
A.x4x2=x8
B.(x4y3)2=x4y5
C.6x23xy=18x3y
D.a4+a7=a11
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一辦公樓CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高3米的影子CE;而當(dāng)光線與地面的夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有30米的距離(B、F、C在一條直線上).現(xiàn)要在A、E之間掛一些彩旗,求A、E之間的距離.(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈,精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決江北學(xué)校學(xué)生上學(xué)過河難的問題,鄉(xiāng)政府決定修建一座橋,建橋過程中需測量河的寬度(即兩平行
河岸AB與MN之間的距離).在測量時(shí),選定河對岸MN上的點(diǎn)C處為橋的一端,在河岸點(diǎn)A處,測得∠CAB=30°,
沿河岸AB前行30米后到達(dá)B處,在B處測得∠CBA=60°,請你根據(jù)以上測量數(shù)據(jù)求出河的寬度.(參考數(shù)據(jù):≈1.41,≈1.73,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王在下面的計(jì)算中只做對了一道題,他做對的題目是( 。
A.3a72a6=6a42
B.(a7)6=a42
C.a42÷a7=a6
D.a6+a6=a12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,過點(diǎn)C作CD⊥AB于點(diǎn)D,點(diǎn)E是AB邊上一動(dòng)點(diǎn)(不含端點(diǎn)A、B),連接CE,過點(diǎn)B作CE的垂線交直線CE于點(diǎn)F,交直線CD于點(diǎn)G(如圖①).
(1)求證:AE=CG;
(2)若點(diǎn)E運(yùn)動(dòng)到線段BD上時(shí)(如圖②),試猜想AE、CG的數(shù)量關(guān)系是否發(fā)生變化,請直接寫出你的結(jié)論;
(3)過點(diǎn)A作AH垂直于直線CE,垂足為點(diǎn)H,并交CD的延長線于點(diǎn)M(如圖③),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AC交BD于點(diǎn)O,且AB∥CD,給出以下四種說法:
①如果再加上條件“BC=AD”,那么四邊形ABCD一定是平行四邊形;
②如果再加上條件“∠BAD=∠BCD”,那么四邊形ABCD一定是平行四邊形;
③如果再加上條件“AO=OC”,那么四邊形ABCD一定是平行四邊形;
④如果再加上條件“∠DBA=∠CAB”,那么四邊形ABCD一定是平行四邊形.
其中正確的說法是( )
A.①②
B.①③④
C.②③
D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com