【題目】下列各式由左邊到右邊的變形中,是分解因式的為( 。

A. x2﹣4x+4=x(x﹣4)+4 B. a(x+y)=ax+ay

C. x2﹣16+3x=(x﹣4)(x+4)+3x D. 10x2﹣5x=5x(2x﹣1)

【答案】D

【解析】分析:根據(jù)分解因式就是把一個多項式化為幾個整式的積的形式,利用排除法求解.

詳解:A.右邊不是積的形式,x24x+4=(x22A選項錯誤;

B.是多項式乘法,B選項錯誤

C.右邊不是積的形式,C選項錯誤;

D.提公因式法,D選項正確

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,E為AB上一點,∠BED=2∠BAD.

(1)求證:AD平分∠CDE;
(2)若AC⊥AD,∠ACD+∠AED=165°,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為提倡節(jié)約用水,準(zhǔn)備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費.為更好地決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如下不完整的統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)40萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級三班學(xué)生蘇琪為幫助同桌萬宇鞏固“平面直角坐標(biāo)系四個象限內(nèi)及坐標(biāo)軸上的點的坐標(biāo)特點”這一基礎(chǔ)知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標(biāo)系中找出點M(a,b)的位置.

(1)請你用樹狀圖幫萬宇同學(xué)進行分析,并寫出點M所有可能的坐標(biāo);

(2)求點M在第二象限的概率;

(3)張老師在萬宇同學(xué)所畫的平面直角坐標(biāo)系中,畫了一個半徑為3的⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點A(4,3),B(3,1),C(1,2).

(1)在平面直角坐標(biāo)系中分別描出A,B,C三點,并順次連接成△ABC;
(2)將△ABC向左平移6個單位,再向下平移5個單位得到△A1B1C1;畫出△A1B1C1 , 并寫出點A1 , B1 , C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的自變量的取值范圍是﹣3≤x≤6,相應(yīng)的函數(shù)值的取值范圍是﹣5≤y≤﹣2,求這個一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:5(x2y)4(x2y)___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形的三個頂點坐標(biāo)分別為(-1,0)、(0,2)(2,0),則第四個頂點的坐標(biāo)為______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程3x28x100的一次項系數(shù)為_____

查看答案和解析>>

同步練習(xí)冊答案