【題目】如圖,已知一次函數(shù)y=-x+4的圖象與反比例 (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)連接OA,OB,求△AOB的面積.
【答案】(1)反比例函數(shù)解析式為;點(diǎn)B(3,1);(2)4.
【解析】試題分析:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=-x+4,即可得出a,再把點(diǎn)A坐標(biāo)代入反比例函數(shù),即可得出k,兩個(gè)函數(shù)解析式聯(lián)立求得點(diǎn)B坐標(biāo);
(2)過(guò)點(diǎn)A作AE⊥y軸于E,過(guò)點(diǎn)B作BC⊥x軸于C.AE,BC交于點(diǎn)D,求出點(diǎn)D的坐標(biāo),S△AOB=S矩形-S△AOE-S△BOC-S△ABD,即可得出結(jié)果.
試題解析:
(1)∵點(diǎn)A (1,a)在一次函數(shù)y=﹣x+4圖象上,
∴點(diǎn)A為(1,3);
∵點(diǎn)A(1,3)在反比例函數(shù) 的圖象上,
∴k=3,
∴反比例函數(shù)解析式為;
解方程組
得 ,
∴點(diǎn)B(3,1);
(2)如圖,過(guò)點(diǎn)A作AE⊥y軸于E,
過(guò)點(diǎn)B作BC⊥x軸于C.AE,BC交于點(diǎn)D.
∵A(1,3),B(3,1),
∴點(diǎn)D(3,3)
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P1是一塊半徑為1的半圓形紙板,在P1的左下端剪去一個(gè)半徑為 的半圓后得到圖形P2 , 然后依次剪去一個(gè)更小的半圓(其直徑為前一個(gè)被剪掉半圓的半徑)得圖形P3 , P4 , …,Pn , …,記紙板Pn的面積為Sn , 試通過(guò)計(jì)算S1 , S2 , 猜想得到Sn﹣1﹣Sn=(n≥2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】陳杰騎自行車(chē)去上學(xué),當(dāng)他以往常的速度騎了一段路時(shí),忽然想起要買(mǎi)某本書(shū),于是又折回到剛經(jīng)過(guò)的一家書(shū)店,買(mǎi)到書(shū)后繼續(xù)趕去學(xué)校.以下是他本次上學(xué)的路程與所用時(shí)間的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)陳杰家到學(xué)校的距離是多少米?書(shū)店到學(xué)校的距離是多少米?
(2)陳杰在書(shū)店停留了多少分鐘?本次上學(xué)途中,陳杰一共行駛了多少米?
(3)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段陳杰騎車(chē)速度最快?最快的速度是多少米?
(4)如果陳杰不買(mǎi)書(shū),以往常的速度去學(xué)校,需要多少分鐘?本次上學(xué)比往常多用多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若四邊形中某個(gè)頂點(diǎn)與其它三個(gè)頂點(diǎn)的距離相等,則這個(gè)四邊形叫做等距四邊形,這個(gè)頂點(diǎn)叫做這個(gè)四邊形的等距點(diǎn).
(1)判斷:一個(gè)內(nèi)角為120°的菱形 等距四邊形.(填“是”或“不是”)
(2)如圖,在5×5的網(wǎng)格圖中有A、B兩點(diǎn),請(qǐng)?jiān)诖痤}卷給出的兩個(gè)網(wǎng)格圖上各找出C、D兩個(gè)格點(diǎn),使得以A、B、C、D為頂點(diǎn)的四邊形為互不全等的“等距四邊形”,畫(huà)出相應(yīng)的“等距四邊形”,并寫(xiě)出該等距四邊形的端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng).
端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為 端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為
(3)如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC ,BC,若四邊形ABCD是以A為等距點(diǎn)的等距四邊形,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點(diǎn),點(diǎn)A在x正半軸上,OA=12 cm,點(diǎn)B在y軸的正半軸上,OB=12cm,動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OA以2 cm/s的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開(kāi)始沿AB以4cm/s的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)R從點(diǎn)B開(kāi)始沿BO以2cm/s的速度向點(diǎn)O移動(dòng).如果P、Q、R分別從O、A、B同時(shí)移動(dòng),移動(dòng)時(shí)間為t(0<t<6)s.
(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O′與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O′相切?
(3)是否存在△RPQ為等腰三角形?若存在,請(qǐng)直接寫(xiě)出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的信息,回答問(wèn)題:
在數(shù)軸上,我們把到兩個(gè)點(diǎn)距離相等的點(diǎn),叫做這兩個(gè)點(diǎn)的“中點(diǎn)”,例如:
①表示和的點(diǎn)到表示的點(diǎn)距離都為,所以它們“中點(diǎn)”表示的數(shù)是.
②表示和的點(diǎn)到表示的點(diǎn)距離都為,所以它們的“中點(diǎn)”表示的數(shù)是.
()表示和的點(diǎn)的“中點(diǎn)”表示的數(shù)是__________.
()若“中點(diǎn)”表示的數(shù)是,其中一個(gè)點(diǎn)表示的數(shù)是,求另一個(gè)點(diǎn)表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位有職工200人,其中青年職工(20-35歲),中年職工(35-50歲),老年職工(50歲及以上)所占比例如扇形統(tǒng)計(jì)圖所示.
為了解該單位職工的健康情況,小張、小王和小李各自對(duì)單位職工進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計(jì)表分別為表1、表2和表3.
表1:小張抽樣調(diào)查單位3名職工的健康指數(shù)
表2:小王抽樣調(diào)查單位10名職工的健康指數(shù)
表3:小李抽樣調(diào)查單位10名職工的健康指數(shù)
根據(jù)上述材料回答問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中老年職工所占部分的圓心角度數(shù)為
(2)小張、小王和小李三人中, 的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡(jiǎn)要說(shuō)明其他兩位同學(xué)抽樣調(diào)查的不足之處.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com