【題目】如圖,在矩形中;點為坐標(biāo)原點,點,點、在坐標(biāo)軸上,點邊上,直線軸于點.對于坐標(biāo)平面內(nèi)的直線,先將該直線向右平移個單位長度,再向下平移個單位長度,這種直線運動稱為直線的斜平移.現(xiàn)將直線經(jīng)過次斜平移,得到直線.

(備用圖)

1)求直線與兩坐標(biāo)軸圍成的面積;

2)求直線的交點坐標(biāo);

3)在第一象限內(nèi),在直線上是否存在一點,使得是等腰直角三角形?若存在,請直接寫出點的坐標(biāo),若不存在,請說明理由.

【答案】(1);(2)直線的交點坐標(biāo);(3)存在點的坐標(biāo):.

【解析】

1)直線與兩坐標(biāo)軸圍成的面積,即可求解;

2)將直線經(jīng)過2次斜平移,得到直線,即可求解;

3)分為直角、為直角、為直角三種情況,由等腰直角三角形構(gòu)造K字形全等,由坐標(biāo)建立方程分別求解即可.

解:(1矩形,

,

直線軸于點

代入中,得

,解得,

直線,

當(dāng),,

2將直線經(jīng)過次斜平移,得到直線

直線

直線

當(dāng),

∴直線的交點坐標(biāo);

3)①當(dāng)為直角時,如圖1所示:在第一象限內(nèi),在直線上不存在點;

②當(dāng)為直角時,,

過點軸的平行線分別交、于點、,如圖(3

,

設(shè)點,點,

,,

,,

,即:

解得:,

故點,,

③當(dāng)為直角時,如圖4所示:

,

Q點作FQ垂直于y軸垂足為F,過M點作MG垂直FQ垂足為G,

同理可得:FQ=MGAF=DG,

設(shè)Q點坐標(biāo)為(4n),0n3,則AF=DG=3-nFQ=MG=4

M點坐標(biāo)為(7-n,4+n),

代入,得

解得:

故點;

綜上所述:點的坐標(biāo):

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,DCBC,將梯形沿對角線BD折疊,點A恰好落在DC邊上的點A處,若∠ABC20°,則∠ABD的度數(shù)為_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某港口P位于東西方向的海岸線上,遠(yuǎn)航號、海天號輪船同時離開港口,各自沿一固定方向航行,遠(yuǎn)航號每小時航行16海里,海天號每小時航行12海里.它們離開港口一個半小時后,分別位于點Q、R處,且相距30海里,如果知道遠(yuǎn)航號沿北偏東方向航行,請求出海天號的航行方向?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊三角形ABC中,CD為中線,點Q在線段CD上運動,將線段QA繞點Q順時針旋轉(zhuǎn),使得點A的對應(yīng)點E落在射線BC上,連接BQ,設(shè)∠DAQ=α

(0°<α<60°α≠30°).

(1)當(dāng)0°<α<30°時,

①在圖1中依題意畫出圖形,并求∠BQE(用含α的式子表示);

②探究線段CE,ACCQ之間的數(shù)量關(guān)系,并加以證明;

(2)當(dāng)30°<α<60°時,直接寫出線段CE,AC,CQ之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是直線上的一點,射線,分別平分

1)與相等的角有_____________;

2)與互余的角有______________;

3)已知,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點在邊上,.過點于點,以為一邊在內(nèi)作等邊,點圍成的區(qū)域(包括各邊)內(nèi)的一點,過點于點,作于點.設(shè),,則最大值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎

D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).

①圖2中的陰影部分的面積為

②觀察圖2請你寫出 (a+b)2、(a﹣b)2、ab之間的等量關(guān)系是

③根據(jù)(2)中的結(jié)論,若x+y=5,xy=,則(x﹣y)2= ;

④實際上通過計算圖形的面積可以探求相應(yīng)的等式.

如圖3,你發(fā)現(xiàn)的等式是

查看答案和解析>>

同步練習(xí)冊答案