【題目】如圖所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,交AD于E,若AE=13,求AF的長(zhǎng)度.
【答案】解:∵∠BAC=90°,
∴∠ABF+∠AFB=90°,
又∵AD⊥BC,
∴∠ADB=90°,
∴∠EBD+∠BED=90°,
又∵BF平分∠ABC,
∴∠ABF=∠EBD,
∴∠AFB=∠BED,
又∵∠AEF=∠BED,
∴∠AEF=∠AFB,
∴AE=AF,
∵AE=13,
∴AF=13.
【解析】根據(jù)三角形內(nèi)角和定理和角平分線性質(zhì)得到∠AEF=∠AFB,根據(jù)等角對(duì)等邊得到AE=AF,求出AF的長(zhǎng)度.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的內(nèi)角和外角(三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,信號(hào)塔PQ座落在坡度i=1:2的山坡上,其正前方直立著一警示牌.當(dāng)太陽(yáng)光線與水平線成60°角時(shí),測(cè)得信號(hào)塔PQ落在斜坡上的影子QN長(zhǎng)為米,落在警示牌上的影子MN長(zhǎng)為3米,求信號(hào)塔PQ的高.(結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下各組數(shù)分別是三條線段的長(zhǎng)度,其中可以構(gòu)成三角形的是( )
A. 1,3,4 B. 1,2,3 C. 6,6,10 D. 1,4,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點(diǎn)C、D,與邊BC相交于點(diǎn)F,OA與CD相交于點(diǎn)E,連接FE并延長(zhǎng)交AC邊于點(diǎn)G.
(1)求證:DF∥AO;
(2)若AC=6,AB=10,求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)F為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,BE=BF,連接AE,EF和CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(3)請(qǐng)?jiān)趛軸上求作一點(diǎn)P,使△PB1C的周長(zhǎng)最小,并寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)多邊形的內(nèi)角和為1080°,則這個(gè)多邊形為( )
A. 七邊形 B. 八邊形 C. 九邊形 D. 十邊形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com