【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

【答案】解:過點D作l1的垂線,垂足為F,

∵∠DEB=60°,∠DAB=30°,
∴∠ADE=∠DEB﹣∠DAB=30°,
∴△ADE為等腰三角形,
∴DE=AE=20,
在Rt△DEF中,EF=DEcos60°=20× =10,
∵DF⊥AF,
∴∠DFB=90°,
∴AC∥DF,
由已知l1∥l2 ,
∴CD∥AF,
∴四邊形ACDF為矩形,CD=AF=AE+EF=30,
答:C、D兩點間的距離為30m
【解析】此題主要考查了兩點之間的距離以及等腰三角形的判定與性質(zhì)以及銳角三角函數(shù)關(guān)系,得出EF的長是解題關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD是梯形,AD∥BC,CA是∠BCD的平分線,且AB⊥AC,AB=4,AD=6,則tanB=( )

A.2
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結(jié)論中正確的有(寫出所有正確結(jié)論的序號)
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當△ABP≌△ADN時,BP=4 ﹣4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠B=45°,∠C=30°,點D是BC上一點,連接AD,過點A作AG⊥AD,在AG上取點F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.

(1)若AB=2 ,求BC的長;
(2)如圖1,當點G在AC上時,求證:BD= CG;
(3)如圖2,當點G在AC的垂直平分線上時,直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,田亮同學用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學知識是( 。
A.垂線段最短
B.經(jīng)過一點有無數(shù)條直線
C.經(jīng)過兩點,有且僅有一條直線
D.兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結(jié)論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是(
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,D點在拋物線y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是拋物線與y軸的交點.

(1)求直線AC和拋物線的解析式;
(2)動點P從A到D,同時動點Q從C到A都以每秒1個單位的速度運動.問:當P運動到何處時,△APQ是直角三角形?
(3)在(2)中當P運動到某處時,四邊形PDCQ的面積最小,求此時△CMQ的面積.

查看答案和解析>>

同步練習冊答案