【題目】在平面直角坐標系xOy中,一次函數(shù)y=-x+k的圖象與反比例函數(shù)y=-的圖象交于點A-4n)和點B

1)求k的值和點B的坐標;

2)若Px軸上一點,且AP=AB,直接寫出點P的坐標.

【答案】(1)點B的坐標是(1,-4).(2)點P的是坐標(3,0)或(-11,0).

【解析】

1)將點A的坐標帶入反比例函數(shù)解析式中,求出n值,再將A點的坐標帶入一次函數(shù)解析式中即可求出k值,聯(lián)立一次函數(shù)解析式與反比例函數(shù)解析式成方程組,解方程組即可得出結論;
2)設出點P的坐標為(m,0).根據(jù)兩點間的距離公式表示出線段APAB的長度,根據(jù)AP=AB得出關于m的一元二次方程,解方程即可得出結論.

解:(1)把A-4,n)代入中,

得:n=-=1

A-4,1)代入y=-x+k中,

得:1=--4+k,解得:k=-3

解方程組,得

∴點B的坐標是(1,-4).

2)設點P的坐標為(m0).

則:AB==5,AP=

AP=AB

5=,即m2+8m-33=0,

解得:m1=-11m2=3

答:點P的是坐標(3,0)或(-11,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點坐標為(﹣2,﹣9a),下列結論:①4a+2b+c>0;5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個根x1x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣4.其中正確的結論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AB6,連接AC,BD,P是正方形邊上或對角線上一點,若PD2AP,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A0,1),B4,2),C2,0).

1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;

2)將△ABC繞著點(﹣1,﹣1)旋轉180°得到△A2B2C2,畫出△A2B2C2

3)線段B2C2可以看成是線段B1C1繞著平面直角坐標系中某一點逆時針旋轉得到,直接寫出旋轉中心的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013122130分,中國于西昌衛(wèi)星發(fā)射中心成功將嫦娥三號探測器送入軌道.20131215435分,嫦娥三號探測器與玉兔號月球車分離,玉兔號月球車順利駛抵月球表面,留下了中國在月球上的第一個足跡.玉兔號月球車一共在月球上工作了972天,約23000小時.將23000用科學記數(shù)法表示為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點DBC邊上的一點,點D關于直線AB的對稱點為點E,連接AD、DE,在AD上取點F,使得∠EFD=60°,射線EFAC交于點G

1)設∠BAD,求∠AGE的度數(shù)(用含α的代數(shù)式表示);

2)用等式表示線段CGBD之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某市九年級學生學業(yè)考試體育成績,現(xiàn)從中隨機抽取部分學生的體育成績

進行分段(A50分;B49-45分;C44-40分;D39-30分;E29-0分)統(tǒng)計如下:

根據(jù)上面提供的信息,回答下列問題:

1)在統(tǒng)計表中,a的值為 ,b的值為 ,并將統(tǒng)計圖補充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);

2)甲同學說:我的體育成績是此次抽樣調查所得數(shù)據(jù)的中位數(shù). 請問:甲同學的體育成績應在什么分數(shù)段內(nèi)? (填相應分數(shù)段的字母)

3)如果把成績在40分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級學生中體育成績?yōu)閮?yōu)秀的學生人數(shù)約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+4的圖象與x軸交于點A(4,0)和點D(1,0),與y軸交于點C,過點CBC平行于x軸交拋物線于點B,連接AC

(1)求這個二次函數(shù)的表達式;

(2)M從點O出發(fā)以每秒2個單位長度的速度向點A運動;點N從點B同時出發(fā),以每秒1個單位長度的速度向點C運動,其中一個動點到達終點時,另一個動點也隨之停動,過點NNQ垂直于BCAC于點Q,連結MQ.

①求△AQM的面積S與運動時間t之間的函數(shù)關系式,寫出自變量的取值范圍;當t為何值時,S有最大值,并求出S的最大值;

②是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場試銷一種成本為50元/件的恤.經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元/件)符合一次函數(shù)關系,試銷數(shù)據(jù)如下表:

售價(元/件)

……

55

60

70

……

銷量(件)

……

75

70

60

……

(1)求一次函數(shù)的表達式;

(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價之間的關系式;銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

同步練習冊答案