【題目】如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于點(diǎn)A(1,0)、B(3,0),與y軸交于點(diǎn)C.
(1)求二次函數(shù)的解析式;
(2)若點(diǎn)P為拋物線上的一點(diǎn),點(diǎn)F為對(duì)稱(chēng)軸上的一點(diǎn),且以點(diǎn)A、B、P、F為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)E是二次函數(shù)第四象限圖象上一點(diǎn),過(guò)點(diǎn)E作x軸的垂線,交直線BC于點(diǎn)D,求四邊形AEBD面積的最大值及此時(shí)點(diǎn)E的坐標(biāo).
【答案】(1)y=x2﹣4x+3;(2)點(diǎn)P(4,3)或(0,3)或(2,﹣1);(3)最大值為 ,E(,﹣).
【解析】
(1)用交點(diǎn)式函數(shù)表達(dá)式,即可求解;
(2)分當(dāng)AB為平行四邊形一條邊、對(duì)角線,兩種情況,分別求解即可;
(3)利用S四邊形AEBD=AB(yD﹣yE),即可求解.
解:(1)用交點(diǎn)式函數(shù)表達(dá)式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;
故二次函數(shù)表達(dá)式為:y=x2﹣4x+3;
(2)①當(dāng)AB為平行四邊形一條邊時(shí),如圖1,
則AB=PE=2,
則點(diǎn)P坐標(biāo)為(4,3),
當(dāng)點(diǎn)P在對(duì)稱(chēng)軸左側(cè)時(shí),即點(diǎn)C的位置,點(diǎn)A、B、P、F為頂點(diǎn)的四邊形為平行四邊形,
故:點(diǎn)P(4,3)或(0,3);
②當(dāng)AB是四邊形的對(duì)角線時(shí),如圖2,
AB中點(diǎn)坐標(biāo)為(2,0)
設(shè)點(diǎn)P的橫坐標(biāo)為m,點(diǎn)F的橫坐標(biāo)為2,其中點(diǎn)坐標(biāo)為: ,
即:=2,解得:m=2,
故點(diǎn)P(2,﹣1);
故:點(diǎn)P(4,3)或(0,3)或(2,﹣1);
(3)直線BC的表達(dá)式為:y=﹣x+3,
設(shè)點(diǎn)E坐標(biāo)為(x,x2﹣4x+3),則點(diǎn)D(x,﹣x+3),
S四邊形AEBD=AB(yD﹣yE)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,
∵﹣1<0,故四邊形AEBD面積有最大值,
當(dāng)x=,其最大值為,此時(shí)點(diǎn)E(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果拋物線的頂點(diǎn)在拋物線上,拋物線的頂點(diǎn)也在拋物線上時(shí),那么我們稱(chēng)拋物線與“互為關(guān)聯(lián)”的拋物線.如圖1,已知拋物線:與:是“互為關(guān)聯(lián)”的拋物線,點(diǎn)分別是拋物線,的頂點(diǎn),拋物線經(jīng)過(guò)點(diǎn).
(1)直接寫(xiě)出的坐標(biāo)和拋物線的解析式;
(2)拋物線上是否存在點(diǎn),使得是直角三角形?如果存在,請(qǐng)求出點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,點(diǎn)在拋物線上,點(diǎn)分別是拋物線,上的動(dòng)點(diǎn),且點(diǎn)的橫坐標(biāo)相同,記面積為(當(dāng)點(diǎn)與點(diǎn)重合時(shí)),的面積為(當(dāng)點(diǎn)與點(diǎn)重合時(shí),),令,觀察圖象,當(dāng)時(shí),寫(xiě)出的取值范圍,并求出在此范圍內(nèi)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)的對(duì)稱(chēng)軸為x=-1,交x軸的一個(gè)交點(diǎn)為(x1,0),且0<x1<1, 則下列結(jié)論:①b>0,c<0;②a-b+c>0 ;③b<a ④ 3a+c>0,⑤9a-3b+c>0,其中正確的命題有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在開(kāi)展讀書(shū)交流活動(dòng)中,全體師生積極捐書(shū),為了解所捐書(shū)籍的種類(lèi),對(duì)部分書(shū)據(jù)進(jìn)行了抽樣調(diào)查,李老師根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下面問(wèn)題:
(1)本次抽樣調(diào)查的書(shū)有 本;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)本次活動(dòng)師生共捐書(shū)1600本,請(qǐng)估計(jì)科普類(lèi)書(shū)籍的本數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,AD=6,E為BC上一點(diǎn),把△CDE沿DE折疊,使點(diǎn)C落在AB邊上的F處,則CE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)決定把一塊長(zhǎng)50m,寬30m的矩形空地建成居民健身廣場(chǎng),設(shè)計(jì)方案如圖,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)為大小、形狀都相同的矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周的4個(gè)出口寬度相同,當(dāng)綠化區(qū)較長(zhǎng)邊x為何值時(shí),活動(dòng)區(qū)的面積達(dá)到1341m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的中,,且為上一點(diǎn).今打算在上找一點(diǎn),在上找一點(diǎn),使得與全等,以下是甲、乙兩人的作法:
(甲)連接,作的中垂線分別交、于點(diǎn)、點(diǎn),則、兩點(diǎn)即為所求
(乙)過(guò)作與平行的直線交于點(diǎn),過(guò)作與平行的直線交于點(diǎn),則、兩點(diǎn)即為所求
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。
A. 兩人皆正確B. 兩人皆錯(cuò)誤
C. 甲正確,乙錯(cuò)誤D. 甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為
A、2 B、2.5或3.5 C、3.5或4.5 D、2或3.5或4.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com