【題目】如圖,正方形的頂點(diǎn)、在圓上,若,圓的半徑為2,則陰影部分的面積是__________.(結(jié)果保留根號(hào)和)
【答案】
【解析】
設(shè)AD和BC分別與圓交于點(diǎn)E和F,連接AF、OE,過(guò)點(diǎn)O作OG⊥AE,根據(jù)90°的圓周角對(duì)應(yīng)的弦是直徑,可得AF為圓的直徑,從而求出AF,然后根據(jù)銳角三角函數(shù)和勾股定理,即可求出∠AFB和BF,然后根據(jù)平行線的性質(zhì)、銳角三角函數(shù)和圓周角定理,即可求出OG、AG和∠EOF,最后利用S陰影=S梯形AFCD-S△AOE-S扇形EOF計(jì)算即可.
解:設(shè)AD和BC分別與圓交于點(diǎn)E和F,連接AF、OE,過(guò)點(diǎn)O作OG⊥AE
∵四邊形ABCD是正方形
∴∠ABF=90°,AD∥BC,BC=CD=AD=cm
∴AF為圓的直徑
∵,圓的半徑為2,
∴AF=4cm
在Rt△ABF中sin∠AFB=,BF=
∴∠AFB=60°,FC=BC-BF=
∴∠EAF=∠AFB=60°
∴∠EOF=2∠EAF=120°
在Rt△AOG中,OG=sin∠EAF·AO=,AG= cos∠EAF·AO=1cm
根據(jù)垂徑定理,AE=2AG=2cm
∴S陰影=S梯形AFCD-S△AOE-S扇形EOF
=
=
=
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)過(guò)點(diǎn)的直線交軸于點(diǎn),若點(diǎn)是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),且在對(duì)稱軸的右側(cè),過(guò)點(diǎn)作軸交直線于點(diǎn),作軸交對(duì)稱軸于點(diǎn),以為鄰邊作矩形,當(dāng)矩形的周長(zhǎng)最大時(shí),在軸上有一動(dòng)點(diǎn),軸上有一動(dòng)點(diǎn),一動(dòng)點(diǎn)從線段的中點(diǎn)出發(fā)以每秒個(gè)單位的速度沿的路徑運(yùn)動(dòng)到點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)處停止運(yùn)動(dòng),求動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間的最小值:
(2)如圖, 將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至的位置, 點(diǎn)的對(duì)應(yīng)點(diǎn)分別為,且點(diǎn)恰好落在拋物線的對(duì)稱軸上,連接.點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),連接, 將沿直線翻折為, 是否存在點(diǎn), 使得為等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,3),作直線BC.動(dòng)點(diǎn)P在x軸上運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥x軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),求線段MN的最大值;
(3)是否存在點(diǎn)P,使得以點(diǎn)C、O、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某市的創(chuàng)優(yōu)工作中,某社區(qū)計(jì)劃對(duì)的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)施工隊(duì)來(lái)完成,已知甲隊(duì)每天能完成綠化面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天.
(1)求甲、乙兩施工隊(duì)每天分別能完成的綠化面積是多少?
(2)設(shè)先由甲隊(duì)施工m天,再由乙隊(duì)施工n天,剛好完成綠化任務(wù),
①求n與m的關(guān)系式;
②若甲、乙兩隊(duì)施工的總天數(shù)不超過(guò)14天,問(wèn)甲工程隊(duì)最少施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推動(dòng)陽(yáng)光體育運(yùn)動(dòng)的廣泛開(kāi)展,引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,走到陽(yáng)光,積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買(mǎi)一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年的隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了統(tǒng)計(jì)圖A和圖B,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次隨機(jī)抽樣的學(xué)生數(shù)是多少?A中值是多少?
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買(mǎi)200雙運(yùn)動(dòng)鞋,建議購(gòu)買(mǎi)35號(hào)運(yùn)動(dòng)鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,點(diǎn)A、B、P、Q均為格點(diǎn).
(Ⅰ)線段AB的長(zhǎng)度等于__________;
(Ⅱ)點(diǎn)M、N是線段AB上的兩個(gè)動(dòng)點(diǎn)(M較靠近點(diǎn)B),且始終滿足,若點(diǎn)M、N運(yùn)動(dòng)恰好使四邊形MNPQ的周長(zhǎng)最小時(shí),請(qǐng)?jiān)诮o定的網(wǎng)格中用無(wú)刻度直尺畫(huà)出點(diǎn)M的位置,并簡(jiǎn)要說(shuō)明你的作圖方法:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),,,與軸的負(fù)半軸相交,且交點(diǎn)在的上方.下列四個(gè)結(jié)論中一定正確的是______.
①;②;③;④.(填序號(hào)即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com