【題目】anbn+1·(abn)3________________
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=k1x+b的圖象與x軸交于點A(-3,0),與y軸交于點B,且與正比例函數(shù)y=kx的圖象交點為C(3,4).
(1)求正比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)若點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,請求出點D的坐標(biāo);
(3)在x軸上是否存在一點E使△BCE周長最小,若存在,求出點E的坐標(biāo)
(4)在x軸上求一點P使△POC為等腰三角形,請直接寫出所有符合條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD與角平分線AE相交點F,過點C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度數(shù);
(2)求證:CE=BH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線相交于點O.過點O作EF∥BC.分別交AB和AC于點E、F.
(l)你能發(fā)現(xiàn)哪些結(jié)論,把它們寫出來.并選擇一個加以證明;
(2)若AB=10,AC=8.試求△AFF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8,四邊形ABEG、GEFH、HFCD都是邊長為1的正方形.
(1)求證:△AEF∽△CEA;
(2)求證:∠AFB+∠ACB=45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于命題“如果∠1+∠2=90°,那么∠1≠∠2”,能說明它是假命題的反例是( 。
A. ∠1=60°,2=40° B. ∠1=50°,∠2=40°
C. ∠1=∠2=40° D. ∠1=∠2=45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,連接BD,CE,BD和CE相交于點F,若△ABC不動,將△ADE繞點A任意旋轉(zhuǎn)一個角度.
(1)求證:△BAD≌△CAE.
(2)如圖①,若∠BAC=∠DAE=90°,判斷線段BD與CE的關(guān)系,并說明理由;
(3)如圖②,若∠BAC=∠DAE=60°,求∠BFC的度數(shù);
(4)如圖③,若∠BAC=∠DAE= ,直接寫出∠BFC的度數(shù)(不需說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com