【題目】如圖,已知點(diǎn)A是雙曲線y= 在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊做等腰直角△ABC,點(diǎn)C在第四象限.隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y= (k<0)上運(yùn)動(dòng),則k的值是

【答案】﹣2
【解析】解:

連結(jié)OC,作CD⊥x軸于D,AE⊥x軸于E,如圖,
設(shè)A點(diǎn)坐標(biāo)為(a, ),
∵A點(diǎn)、B點(diǎn)是正比例函數(shù)圖象與雙曲線y= 的交點(diǎn),
∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,
∴OA=OB
∵△ABC為等腰直角三角形,
∴OC=OA,OC⊥OA,
∴∠DOC+∠AOE=90°,
∵∠DOC+∠DCO=90°,
∴∠DCO=∠AOE,
在△COD和△OAE中,

∴△COD≌△OAE(AAS),
∴OD=AE= ,CD=OE=a,
∴C點(diǎn)坐標(biāo)為( ,﹣a),
∵﹣a =﹣2,
∴點(diǎn)C在反比例函數(shù)y=﹣ 圖象上.
所以答案是﹣2.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長為6cm,P是對(duì)角線BE上一動(dòng)點(diǎn),過點(diǎn)P作直線l與BE垂直,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)且以1cm/s的速度勻速平移至E點(diǎn).設(shè)直線l掃過正六邊形ABCDEF區(qū)域的面積為S(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),下列能反映S與t之間函數(shù)關(guān)系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,F(xiàn)AD的中點(diǎn),作CEAB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:

(1)DCF+D=90°;(2)AEF+ECF=90°;(3)SBEC=2SCEF;(4)若∠B=80°,則∠AEF=50°.

其中一定成立的是_____(把所有正確結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)你的經(jīng)驗(yàn),分別求下列事件的概率:

(1)在一個(gè)不透明的袋中裝有紅球3個(gè),白球2個(gè),黑球1個(gè),每種球除顏色外其余都相同,搖勻后隨機(jī)地從袋中取出1個(gè)球,取到紅球的概率.

(2)投擲一枚普通正方體骰子,出現(xiàn)的點(diǎn)數(shù)為7的概率.

(3)投擲兩枚普通硬幣,出現(xiàn)兩個(gè)正面的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,ABE與∠CDE兩個(gè)角的角平分線相交于點(diǎn)F.

(1)如圖1,若∠E=80°,求∠BFD的度數(shù).

(2)如圖2,若∠ABM=ABF,CDM=CDF,試寫出∠M與∠E之間的數(shù)量關(guān)系并證明你的結(jié)論.

(3)若∠ABM=ABF,CDM=CDF,E=m°,請(qǐng)直接用含有n,m°的代數(shù)式表示出∠M.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年春季,建陽區(qū)某服裝商店分兩次從批發(fā)市場購進(jìn)同一款服裝,數(shù)量之比是2:3,且第一、二次進(jìn)貨價(jià)分別為每件50元、40元,總共付了4400元的貨款.
(1)求第一、二次購進(jìn)服裝的數(shù)量分別是多少件?
(2)由于該款服裝剛推出時(shí),很受歡迎,按每件70元銷售了x件;后來,由于該服裝滯銷,為了及時(shí)處理庫存,緩解資金壓力,其剩余部分的按每件30元全部售完.當(dāng)x的值至少為多少時(shí),該服裝商店才不會(huì)虧本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)閱讀下面例題,解答問題

例題:已知二次三項(xiàng)式x24x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為(x+n),得x24x+m=(x+3)(x+n),

x24x+mx2+n+3x+3n

解得:n=﹣7m=﹣21

∴另一個(gè)因式為(x7),m的值為﹣21

問題:

1)若二次三項(xiàng)式x25x+6可分解為(x2)(x+a),則a   

2)若二次三項(xiàng)式2x2+bx5可分解為(2x1)(x+5),則b   ;

3)仿照以上方法解答下面問題:若二次三項(xiàng)式2x2+3xk有一個(gè)因式是(2x5),求另一個(gè)因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣(x+1)(x﹣m)交x軸于A,B兩點(diǎn)(A在B的左側(cè),m>0),交y軸正半軸于點(diǎn)C,過點(diǎn)C作x軸的平行線交拋物線于另一點(diǎn)E,拋物線的對(duì)稱軸交CE于點(diǎn)F,以C為圓心畫圓,使⊙C經(jīng)過點(diǎn)(0,2).

(1)直接寫出OB,OC的長.(均用含m的代數(shù)式表示)
(2)當(dāng)m>2時(shí),判斷點(diǎn)E與⊙C的位置關(guān)系,并說明理由.
(3)當(dāng)拋物線的對(duì)稱軸與⊙C相交時(shí),其中下方的交點(diǎn)為D.連結(jié)CD,BD,BC.
①當(dāng)m>3,且C,D,B三點(diǎn)在同一直線上時(shí),求m的值.
②當(dāng)△BCD是以CD為腰的等腰三角形時(shí),求m的值.(直接寫出答案即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案