【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1: ,點(diǎn)P、H、B、C、A在同一個(gè)平面上.點(diǎn)H、B、C在同一條直線上,且PH⊥HC.

(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求山坡A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù): ≈1.414, ≈1.732)

【答案】
(1)30
(2)

解:由題意得,∠PBH=60°,∠APB=45°,

∵∠ABC=30°,

∴∠ABP=90°,

∴△PBA是等腰直角三角形,

∴PB= = = =20 ,

∵AB=PB=20 =34.6


【解析】解:(1)過A作AD⊥BC于D,

∵山坡的坡度i(即tan∠ABC)為1:
∴∠ABC=30°,
所以答案是:30;
【考點(diǎn)精析】本題主要考查了關(guān)于仰角俯角問題的相關(guān)知識(shí)點(diǎn),需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+mx+n的圖象經(jīng)過點(diǎn)A(2,3),對(duì)稱軸為直線x=1,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A,交x軸于點(diǎn)P,交拋物線于另一點(diǎn)B,點(diǎn)A、B位于點(diǎn)P的同側(cè).

(1)求拋物線的解析式;
(2)若PA:PB=3:1,求一次函數(shù)的解析式;
(3)在(2)的條件下,當(dāng)k>0時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)C,使得⊙C同時(shí)與x軸和直線AP都相切,如果存在,請(qǐng)求出點(diǎn)C的坐標(biāo),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊梅是漳州的特色時(shí)令水果,楊梅一上市,水果店的老板用1200元購進(jìn)一批楊梅,很快售完;老板又用2500元購進(jìn)第二批楊梅,所購件數(shù)是第一批的2倍,但進(jìn)價(jià)比第一批每件多了5元.
(1)第一批楊梅每件進(jìn)價(jià)多少元?
(2)老板以每件150元的價(jià)格銷售第二批楊梅,售出80%后,為了盡快售完,決定打折促銷,要使第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價(jià)至少打幾折?(利潤=售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:

(1)169(a-b)2-196(a+b)2;

(2)m4-2m2n2+n4;

(3)m2(m-1)-4(1-m2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MNAB于點(diǎn)D,交BC于點(diǎn)E.若AC3,AB5,則DE等于(

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某港口位于東西方向的海岸線上.遠(yuǎn)航號(hào)、海天號(hào)輪船同時(shí)離開港口,各自沿一固定方向航行,遠(yuǎn)航號(hào)每小時(shí)航行16海里,海天號(hào)每小時(shí)航行12海里.它們離開港口一個(gè)半小時(shí)后相距30海里.如果知道遠(yuǎn)航號(hào)沿東北方向航行,能知道海天號(hào)沿哪個(gè)方向航行?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形MNPQ網(wǎng)格中,每個(gè)小方格的邊長都相等,正方形ABCD的頂點(diǎn)在正方形MNPQ的小方格頂點(diǎn)上.

(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個(gè)小方格的邊長為1,:

ABQ,BCM,CDN,ADP的面積;

正方形ABCD的面積;

(2)設(shè)MB=a,BQ=b,利用這個(gè)圖形中的直角三角形和正方形的面積關(guān)系,你能驗(yàn)證勾股定理嗎?相信你能給出簡明的推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,AB8,BC6,點(diǎn)DAC邊上的動(dòng)點(diǎn),點(diǎn)D從點(diǎn)C出發(fā),沿邊CA向點(diǎn)A運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)A時(shí)停止,若設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.點(diǎn)D運(yùn)動(dòng)的速度為每秒1個(gè)單位長度.

(1)當(dāng)t2時(shí),CD AD ;

(2)求當(dāng)t為何值時(shí),△CBD是直角三角形,說明理由;

(3)求當(dāng)t為何值時(shí),△CBD是以BDCD為底的等腰三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動(dòng):購買原價(jià)超過200元的商品,超過200元的部分可以享受打折優(yōu)惠.若購買商品的實(shí)際付款金額y(單位:元)與商品原價(jià)x(單位:元)的函數(shù)關(guān)系的圖象如圖所示,則超過200元的部分可以享受的優(yōu)惠是(
A.打八折
B.打七折
C.打六折
D.打五折

查看答案和解析>>

同步練習(xí)冊(cè)答案