(2010•順義區(qū)二模)在平面直角坐標(biāo)系xOy中,A、B為反比例函數(shù)
y=(x>0)的圖象上兩點(diǎn),A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)均為1,將
y=(x>0)的圖象繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,A點(diǎn)的對應(yīng)點(diǎn)為A′,B點(diǎn)的對應(yīng)點(diǎn)為B′.
(1)求旋轉(zhuǎn)后的圖象解析式;
(2)求A′、B′點(diǎn)的坐標(biāo);
(3)連接AB′、動點(diǎn)M從A點(diǎn)出發(fā)沿線段AB'以每秒1個(gè)單位長度的速度向終點(diǎn)B′運(yùn)動;動點(diǎn)N同時(shí)從B′點(diǎn)出發(fā)沿線段B′A′以每秒1個(gè)單位長度的速度向終點(diǎn)A′運(yùn)動,當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動的時(shí)間為t秒,試探究:是否存在使△MNB'為等腰直角三角形的t值,若存在,求出t的值;若不存在,說明理由.