【題目】若將一副三角板按如圖所示的方式放置,則下列結(jié)論:①;②如果,則有;③如果,則有;④如果,必有;其中正確的有( )
A.①②③B.①②④C.②③④D.①②③④
【答案】B
【解析】
根據(jù)兩種三角板的各角的度數(shù),利用平行線的判定與性質(zhì)結(jié)合已知條件對各個(gè)結(jié)論逐一驗(yàn)證,即可得出答案.
解:①∵∠CAB=∠EAD=90°,
∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,
∴∠1=∠3,故本選項(xiàng)正確.
②∵∠2=30°,
∴∠1=90°-30°=60°,
∵∠E=60°,
∴∠1=∠E,
∴AC∥DE,故本選項(xiàng)正確.
③∵∠2=30°,
∴∠3=90°-30°=60°,
∵∠B=45°,
∴BC不平行于AD,故本選項(xiàng)錯誤.
④由∠2=30°可得AC∥DE,從而可得∠4=∠C,故本選項(xiàng)正確.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖矩形ABCD中AB=6,AD=4,點(diǎn)P為AB上一點(diǎn),把矩形ABCD沿過P點(diǎn)的直線l折疊,使D點(diǎn)落在BC邊上的D′處,直線l與CD邊交于Q點(diǎn).
(1)在圖(1)中利用無刻度的直尺和圓規(guī)作出直線l.(保留作圖痕跡,不寫作法和理由)
(2)若PD′⊥PD,①求線段AP的長度;②求sin∠QD′D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
(1)有一個(gè)角為的等腰三角形是等邊三角形;
(2)三個(gè)內(nèi)角度數(shù)之比為的三角形是直角三角形;
(3)有三條互不重合的直線,若,那么;
(4)等腰三角形兩條邊的長度分別為和,則它的周長為或.
其中真命題的個(gè)數(shù)為( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線l上擺放著三個(gè)三角形:△ABC、△HFG、△DCE,已知BC=CE,F(xiàn)、G分別是BC、CE的中點(diǎn),FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.設(shè)圖中三個(gè)四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S1=_____,S2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,四邊形ABCD內(nèi)接于⊙O,延長AD,BC交于點(diǎn)E,且CE=CD.
(1)求證:AB=AE;
(2)若∠BAE=40°,AB=4,求弧CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)一個(gè)凸多邊形除一個(gè)內(nèi)角外,其余各角之和為2750°,這個(gè)多邊形的邊數(shù)為__________,除去的這個(gè)內(nèi)角的度數(shù)為__________.
(2)一個(gè)多邊形截去一個(gè)角后,形成另一個(gè)多邊形的內(nèi)角和是1620°,則原來多邊形的邊數(shù)是____.
(3)一個(gè)凸多邊形的某一個(gè)內(nèi)角的外角與其余內(nèi)角的和恰為500°,那么這個(gè)多邊形的邊數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的BC邊上的一點(diǎn),AD=BD,∠ADC=80°.
(1)求∠B的度數(shù);
(2)若∠BAC=70°,判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx﹣3(k≠0)與坐標(biāo)軸分別交于點(diǎn)C,B,與雙曲線y=﹣(x<0)交于點(diǎn)A(m,1),則AB的長是( 。
A. 2 B. C. 2 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com