如圖,在平行四邊形ABCD中,E、F為對角線BD上的兩點,且∠BAE=∠DCF.
(1)試說明:AE∥CF;
(2) 連接AF和CE,試說明四邊形AFCE是平行四邊形.
(1)根據(jù)平行四邊形的性質(zhì)即可證得△ABE≌△CDF,得∠AEB=∠CFD,即可得∠AEF=∠CFE,根據(jù)平行線的判定即可證得結(jié)論;
由(1)的結(jié)論可知AE∥CF,AE=CF,根據(jù)平行四邊形的判定定理即可證得結(jié)論。
練習冊系列答案
相關(guān)習題
科目:初中數(shù)學
來源:不詳
題型:填空題
如果一個正多邊形繞它的中心旋轉(zhuǎn)60°才和原來的圖形重合,那么這個多邊形是____________。
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,等邊
邊長為4,
是邊
上動點,
于H,過
作
∥
,交線段
于點
,在線段
上取點
,使
。設(shè)
。
(1)請直接寫出圖中與線段
相等的兩條線段(不再另外添加輔助線);
(2)
是線段
上的動點,當四邊形
是平行四邊形時,求平行四邊形
的面積(用含
的代數(shù)式表示);
(3)當(2)中的平行四邊形EFPQ面積最大時,以E為圓心,r為半徑作圓,根據(jù)⊙E與此時平行四邊形EFPQ四條邊交點的總個數(shù),直接寫出相應(yīng)的
的取值范圍。
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
順次連接等腰梯形各邊中點得到的四邊形是_____________。
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,將一張長為70cm的矩形紙片ABCD沿對稱軸EF折疊后得到如圖所示的形狀,若折疊后AB與CD的距離為60cm,則原紙片的寬度為( )
A.20 cm | B.15 cm | C.10 cm | D.30 cm |
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,將正方形沿圖中虛線(其中x<y)剪成①②③④四塊圖形,用這四塊圖形恰能拼成一個矩形(非正方形)(1)畫出拼成的矩形的簡圖;(2)求
的值。
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,AD∥FE,點B、C在AD上,∠1=∠2,BF=BC
⑴求證:四邊形BCEF是菱形;
⑵若AB=BC=CD,求證:△ACF≌△BDE.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,把長方形紙片ABCD沿EF折疊,使點D與點B重合,點C落在點C′的位置上.
⑴若∠1=50°,求∠2、∠3的度數(shù);
⑵若AB=7,DE=8,求CF的長度.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
已知,如圖,四邊形
中,
,
,
,且
,
試求:(1)
的度數(shù);(2)四邊形
的面積(結(jié)果保留根號);
查看答案和解析>>