【題目】如圖,已知點(diǎn)A(m-4,m+1)在x軸上,將點(diǎn)A右移8個(gè)單位,上移4個(gè)單位得到點(diǎn)B.
(1)則m= ;B點(diǎn)坐標(biāo)( );
(2)連接AB交y軸于點(diǎn)C,則= ;
(3)點(diǎn)D是x軸上一點(diǎn),△ABD的面積為12,求D點(diǎn)坐標(biāo).
【答案】(1)-1,(3,4);(2);(3)(-11,0)或(1,0)
【解析】
(1)根據(jù)x軸上的點(diǎn)縱坐標(biāo)為0求得m的值,再根據(jù)點(diǎn)的坐標(biāo)平移上加下減,右加左減可得B點(diǎn)的坐標(biāo);
(2)設(shè)直線(xiàn)AB的函數(shù)關(guān)系式為:y=kx+b,代入A、B兩點(diǎn)的坐標(biāo)聯(lián)立方程組求得直線(xiàn)AB的函數(shù)關(guān)系式,再求得點(diǎn)C的坐標(biāo),根據(jù)勾股定理可得AC與BC的長(zhǎng)度,求比值即可;
(3)設(shè)點(diǎn)D坐標(biāo)為(x,0),則AD=,若AD為△ABD的底,則B點(diǎn)的縱坐標(biāo)4即為高,根據(jù)三角形面積公式求解即可.
解:(1)∵點(diǎn)A在x軸上,
∴m+1=0,
∴m=-1,
∴m-4=-5,點(diǎn)A(-5,0),
-5+8=3,0+4=4,
∴點(diǎn)B(3,4)
故答案為:-1,(3,4).
(2)設(shè)直線(xiàn)AB的函數(shù)關(guān)系式為:y=kx+b,
代入A、B兩點(diǎn)坐標(biāo),可得,
解得:,
∴AB:,
當(dāng)x=0時(shí),y=,
∴點(diǎn)C(0,),
∴AC==,
BC==,
∴=,
故答案為:.
(3)設(shè)點(diǎn)D坐標(biāo)為(x,0),則AD=,
S△ABD=,
,
解得:x=-11或x=1,
∴點(diǎn)D的坐標(biāo)為:(-11,0)或(1,0) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)和的圖象關(guān)于原點(diǎn)成中心對(duì)稱(chēng),我們就稱(chēng)其中一個(gè)函數(shù)是另一個(gè)函數(shù)的中心對(duì)稱(chēng)函數(shù),也稱(chēng)函數(shù)和互為中心對(duì)稱(chēng)函數(shù).
求函數(shù)的中心對(duì)稱(chēng)函數(shù);
如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點(diǎn)的坐標(biāo)分別為,,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)E和原點(diǎn)O,頂點(diǎn)為已知函數(shù)和互為中心對(duì)稱(chēng)函數(shù);
請(qǐng)?jiān)趫D中作出二次函數(shù)的頂點(diǎn)作圖工具不限,并畫(huà)出函數(shù)的大致圖象;
當(dāng)四邊形EPFQ是矩形時(shí),請(qǐng)求出a的值;
已知二次函數(shù)和互為中心對(duì)稱(chēng)函數(shù),且的圖象經(jīng)過(guò)的頂點(diǎn)當(dāng)時(shí),求代數(shù)式的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為BC邊上的一點(diǎn).
(1)以點(diǎn)C為旋轉(zhuǎn)中心,將△ACD逆時(shí)針旋轉(zhuǎn)90°,得到△BCE,請(qǐng)你畫(huà)出旋轉(zhuǎn)后的圖形;
(2)延長(zhǎng)AD交BE于點(diǎn)F,求證:AF⊥BE;
(3)若AC=,BF=1,連接CF,則CF的長(zhǎng)度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,點(diǎn) A( 2,2)、B(0,1)點(diǎn) P 在 x 軸上,且△PAB 的等腰三角形,則滿(mǎn)足條件的點(diǎn) P 共有()個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,AD是中線(xiàn),E是AD的中點(diǎn),過(guò)點(diǎn)A作交BE的延長(zhǎng)線(xiàn)于F,連接CF.
求證:;
如果,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC 中,AD 平分∠BAC,AD=AB,CM⊥AD 于 M,請(qǐng)你通過(guò)觀察和測(cè)量,猜想線(xiàn)段 AB、AC 之和與線(xiàn)段 AM 有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線(xiàn)的頂點(diǎn)在BC邊上,且拋物線(xiàn)經(jīng)過(guò)O,A兩點(diǎn),直線(xiàn)AC交拋物線(xiàn)于點(diǎn)D.
(1)求拋物線(xiàn)的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)M在拋物線(xiàn)上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC的直角頂點(diǎn)C置于直線(xiàn)l上,AC=BC,現(xiàn)過(guò)A.B兩點(diǎn)分別作直線(xiàn)l的垂線(xiàn),垂足分別為點(diǎn)D.E.
(1)求證:△ACD≌△CBE.
(2)若BE=3,DE=5,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在ABC中,,,點(diǎn)D是AB中點(diǎn),
(1)點(diǎn)E為邊AC上一點(diǎn),連接CD,DE,以DE為邊在DE的左側(cè)作等邊三角形DEF,連接BF.
(i)求證:△BCD為等邊三角形;
(ii)隨著點(diǎn)E位置的變化,的度數(shù)是否變化?若不變化,求出的度數(shù);
(2)DPAB交AC于點(diǎn)P,點(diǎn)E為線(xiàn)段AP上一點(diǎn),連結(jié)BE,作,如圖2所示,EQ交PD延長(zhǎng)線(xiàn)于Q,探究線(xiàn)段PE,PQ與AP之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com