(本小題滿分14分)如圖9,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點(diǎn),點(diǎn)A在x正半軸上,OA=cm,點(diǎn)B在y軸的正半軸上,OB=12cm,動點(diǎn)P從點(diǎn)O開始沿OA以cm/s的速度向點(diǎn)A移動,動點(diǎn)Q從點(diǎn)A開始沿AB以4cm/s的速度向點(diǎn)B移動,動點(diǎn)R從點(diǎn)B開始沿BO以2cm/s的速度向點(diǎn)O移動.如果P、Q、R分別從O、A、B同時移動,移動時間為t(0<t<6)s.

(1)求∠OAB的度數(shù).

(2)以O(shè)B為直徑的⊙O‘與AB交于點(diǎn)M,當(dāng)t為何值時,PM與⊙O‘相切?

(3)寫出△PQR的面積S隨動點(diǎn)移動時間t的函數(shù)關(guān)系式,并求s的最小值及相應(yīng)的t值.

(4)是否存在△APQ為等腰三角形,若存在,求出相應(yīng)的t值,若不存在請說明理由.

 

【答案】

 

(1)∠OAB=30°

(2)t=3時,PM與⊙O‘相切

(3)

(4)當(dāng)t=2,t=3.6,t=-18時,△APQ是等腰三角形.

【解析】解:(1)在Rt△AOB中:

tan∠OAB=

∴∠OAB=30°

(2)如圖10,連接O‘P,O‘M. 當(dāng)PM與⊙O‘相切時,有∠PM O‘=∠PO O‘=90°,

   △PM O‘≌△PO O‘

由(1)知∠OBA=60°

∵O‘M= O‘B

∴△O‘BM是等邊三角形

∴∠B O‘M=60°可得∠O O‘P=∠M O‘P=60°

∴OP= O O‘·tan∠O O‘P =6×tan60°=

又∵OP=t

t=,t=3

即:t=3時,PM與⊙O‘相切.

(3)如圖9,過點(diǎn)Q作QE⊥x于點(diǎn)E

   ∵∠BAO=30°,AQ=4t

   ∴QE=AQ=2t

   AE=AQ·cos∠OAB=4t×

∴OE=OA-AE=-t

   ∴Q點(diǎn)的坐標(biāo)為(-t,2t)

   S△PQR= S△OAB -S△OPR -S△APQ -S△BRQ

            =

 =

 =   (

   當(dāng)t=3時,S△PQR最小=

   (4)分三種情況:如圖11.

1當(dāng)AP=AQ1=4t時,

∵OP+AP=

t+4t=

∴t=

或化簡為t=-18

2當(dāng)PQ2=AQ2=4t時

 過Q2點(diǎn)作Q2D⊥x軸于點(diǎn)D,

∴PA=2AD=2A Q2·cosA=t

t+t =

∴t=2

3當(dāng)PA=PQ3時,過點(diǎn)P作PH⊥AB于點(diǎn)H

 AH=PA·cos30°=(-t)·=18-3t

AQ3=2AH=36-6t

得36-6t=4t,

∴t=3.6

綜上所述,當(dāng)t=2,t=3.6,t=-18時,△APQ是等腰三角形.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25.(本小題滿分14分)

如圖13,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-1),ΔABC的面積為

(1)求該二次函數(shù)的關(guān)系式;

(2)過y軸上的一點(diǎn)M(0,m)作y軸上午垂線,若該垂線與ΔABC的外接圓有公共點(diǎn),求m的取值范圍;

(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ABCD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

經(jīng)過點(diǎn)(0,4).

(1)       求m的值;

(2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

① 試求平移后的拋物線的解析式;

② 試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)
已知:如圖,拋物線與y軸交于點(diǎn)C(0,), 與x軸交于點(diǎn)A、 B,點(diǎn)A的坐標(biāo)為(2,0).

(1)求該拋物線的解析式;
(2)點(diǎn)P是線段AB上的動點(diǎn),過點(diǎn)P作PD∥BC,交AC于點(diǎn)D,連接CP.當(dāng)△CPD的面積最大時,求點(diǎn)P的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點(diǎn)Q,與直線BC交于點(diǎn)F,點(diǎn)M 的坐標(biāo)為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存  在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省蘿崗區(qū)初中畢業(yè)班綜合測試數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)
如圖1,拋物線y軸交于點(diǎn)A,E(0,b)為y軸上一動點(diǎn),過點(diǎn)E的直線與拋物線交于點(diǎn)B、C.
 
【小題1】(1)求點(diǎn)A的坐標(biāo);
【小題2】(2)當(dāng)b=0時(如圖2),求的面積。
【小題3】(3)當(dāng)時,的面積大小關(guān)系如何?為什么?
【小題4】(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

經(jīng)過點(diǎn)(0,4).

(1)       求m的值;

(2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

①  試求平移后的拋物線的解析式;

②  試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案