【題目】一些完全相同的小正方形搭成一個幾何體,這個幾何體從正面和左面看所得的平面圖形均如圖所示,小正方體的塊數(shù)可能有( )
A. 7種 B. 8種 C. 9種 D. 10種
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是半徑為cm的⊙O外一點,PA,PB分別和⊙O切于點A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一點,過C作⊙O的切線交PA,PB于點D,E.
(1)求△PDE的周長;
(2)若DE=cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要從甲、乙兩名同學(xué)中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中, 他倆的成績分別如下表,請根據(jù)表中數(shù)據(jù)解答下列問題:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格補(bǔ)充完整:
(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是多少;若將 80 分以上(含 80 分) 的成績視為優(yōu)秀,則甲、乙兩名同學(xué)在這五次測試中的優(yōu)秀率分別是多少;
(3)歷屆比賽表明,成績達(dá)到80分以上(含 80分)就很可能獲獎,成績達(dá)到 90分以上(含90分)就很可能獲得一等獎,那么你認(rèn)為選誰參加比賽比較合適?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019車8月8日至18日,第十八屆“世警會”首次來到亞洲在成都舉辦武侯區(qū)以相關(guān)事宜為契機(jī),進(jìn)一步改善區(qū)域生態(tài)環(huán)境.在天府吳園道部分地段種植白芙蓉和醉芙蓉兩種花卉.經(jīng)市場調(diào)查,種植費用y(元)與種植面積x(m2)之間的函數(shù)關(guān)系如圖所示.
(1)請直接寫出兩種花卉y與x的函數(shù)關(guān)系式;
(2)白芙蓉和醉芙蓉兩種花卉的種植面積共1000m2,若白芙蓉的種植面積不少于100m2且不超過醉芙蓉種植面積的3倍,那么應(yīng)該怎樣分配兩種花卉的種植面積才能使種植總費用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D在邊AB上,點E在邊AC的左側(cè),連接AE.
(1)求證:AE=BD;
(2)試探究線段AD、BD與CD之間的數(shù)量關(guān)系;
(3)過點C作CF⊥DE交AB于點F,若BD:AF=1:2,CD=,求線段AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com