【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于點(diǎn)B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,若tan∠ABO= ,OB=4,OE=2,點(diǎn)D的坐標(biāo)為(6,m).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.
【答案】
(1)解:∵在直角△BCE中,tan∠ABO= = ,BE=OE+OB=4+2=6,
∴EC=BEtan∠ABO=6× =3.
∴C的坐標(biāo)是(﹣2,3).
設(shè)反比例函數(shù)的解析式是y= .
把C的坐標(biāo)代入得:3= ,
解得:k=﹣6,
則反比例函數(shù)的解析式是:y=﹣
B的坐標(biāo)是(4,0).
∵在直角△AOB中,tan∠ABO= = ,
∴OA=OBtan∠ABO=4× =2,
則A的坐標(biāo)是(0,2),
設(shè)直線AB的解析式是y=kx+b,
根據(jù)題意得: ,
解得: .
則直線AB的解析式是:y=﹣ x+2
(2)解:解方程組: ,
解得: 或 ,
則D的坐標(biāo)是:(6,﹣1).
∵OA=2
∴S△COD=S△OAC+S△OAD= ×2×2+ ×2×6=2+6=8
【解析】(1)在直角△BCE中,BE=6,利用三角函數(shù)即可求得CE的長,則C的坐標(biāo)即可求解,然后利用待定系數(shù)法即可求得反比例函數(shù)的解析式;(2)在直角△ABO中,利用三角函數(shù)即可求得OA的長,則A,B的坐標(biāo)已知,利用待定系數(shù)法即可求得直線的解析式;(3)首先求得D的坐標(biāo),根據(jù)S△COD=S△OAC+S△OAD即可求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,解答問題.
飲水問題是關(guān)系到學(xué)生身心健康的重要生活環(huán)節(jié),東坡中學(xué)共有教學(xué)班24個,平均每班有學(xué)生50人,經(jīng)估算,學(xué)生一年在校時間約為240天(除去各種節(jié)假日),春、夏、秋、冬季各60天.原來,學(xué)生飲水一般都是購純凈水(其他碳酸飲料或果汁價格更高),純凈水零售價為1.5元/瓶,每個學(xué)生春、秋、冬季平均每天買1瓶純凈水,夏季平均每天要買2瓶純凈水,學(xué)校為了減輕學(xué)生消費(fèi)負(fù)擔(dān),要求每個班自行購買1臺冷熱飲水機(jī),經(jīng)調(diào)查,購買一臺功率為500 W的冷熱飲水機(jī)約為150元,純凈水每桶6元,每班春、秋兩季,平均每1.5天購買4桶,夏季平均每天購買5桶,冬季平均每天購買1桶,飲水機(jī)每天開10小時,當(dāng)?shù)孛裼秒妰r為0.50元/度.
問題:
(1)在未購買飲水機(jī)之前,全年平均每個學(xué)生要花費(fèi)多少錢來購買純凈水飲用?
(2)在購買飲水機(jī)解決學(xué)生飲水問題后,每班當(dāng)年共要花費(fèi)多少元?
(3)這項(xiàng)便利學(xué)生的措施實(shí)施后,東坡中學(xué)當(dāng)年全體學(xué)生共節(jié)約多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=ax2﹣2(a﹣1)x+a﹣2(a>0).
(1)求證:拋物線與x軸有兩個交點(diǎn);
(2)設(shè)拋物線與x軸有兩個交點(diǎn)的橫坐標(biāo)分別為x1 , x2 , (其中x1>x2).若y是關(guān)于a的函數(shù),且y=ax2+x1 , 求這個函數(shù)的表達(dá)式;
(3)在(2)的條件下,結(jié)合函數(shù)的圖象回答:若使y≤﹣3a2+1,則自變量a的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:w
①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;
②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;
③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣;
④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;
其中結(jié)論正確個數(shù)有( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)居民節(jié)約用水意識,某市在2018年開始對供水范圍內(nèi)的居民用水實(shí)行“階梯收費(fèi)”,具體收費(fèi)標(biāo)準(zhǔn)如下表:
某戶居民四月份用水10 m3時,繳納水費(fèi)23元.
(1) 求a的值;
(2) 若該戶居民五月份所繳水費(fèi)為71元,求該戶居民五月份的用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)教材中數(shù)形結(jié)合的第一個實(shí)例,它包括原點(diǎn),正方向和長度單位三要素,每一個實(shí)數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示.
數(shù)軸上某一個點(diǎn)所對應(yīng)的數(shù)為,另一個點(diǎn)對應(yīng)的數(shù)為,則這兩點(diǎn)之間的距離為________;
數(shù)軸上的數(shù)對應(yīng)的點(diǎn)為,點(diǎn)位于點(diǎn)的右邊,距點(diǎn)個長度單位,為線段上的一點(diǎn),,電子螞蟻、分別從、同時出發(fā),相向而行,的速度為個長度單位/秒,的速度為個長度單位/秒.
①當(dāng)、距點(diǎn)距離相同時,求運(yùn)動時間;
②若電子螞蟻通過點(diǎn)秒后與電子螞蟻相遇,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2AD, AH⊥BC于點(diǎn)H,E是CD的中點(diǎn),連接AE、 BE、HE.
(1)求證: AE⊥BE
(2)求證:∠DEH=3 ∠ EHC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列程序計算,把答案填寫在表格內(nèi),然后觀察有什么規(guī)律,想一想:為什么會有這個規(guī)律?
(1)填寫表內(nèi)空格:
輸入 | -3 | -2 | -1 | 0 | … |
輸出答案 | 9 |
|
|
| … |
(2)發(fā)現(xiàn)的規(guī)律是:輸入數(shù)據(jù)x,則輸出的答案是__________;
(3)為什么會有這個規(guī)律?請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L1∥L2 , 圓O與L1和L2分別相切于點(diǎn)A和點(diǎn)B,點(diǎn)M和點(diǎn)N分別是L1和L2上的動點(diǎn),MN沿L1和L2平移,圓O的半徑為1,∠1=60°,當(dāng)MN與圓相切時,AM的長度等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com