【題目】如圖,AB∥DE,AB=DE,BF=EC.
(1)求證:AC∥DF;
(2)若CF=1個(gè)單位長(zhǎng)度,能由△ABC經(jīng)過(guò)圖形變換得到△DEF嗎?若能,請(qǐng)你用軸對(duì)稱、平移或旋轉(zhuǎn)等描述你的圖形變換過(guò)程;若不能,說(shuō)明理由.
【答案】(1)證明見(jiàn)試題解析;(2)能,△ABC先向右平移1個(gè)單位長(zhǎng)度,再繞點(diǎn)C旋轉(zhuǎn)180°即可得到△DEF.
【解析】
試題分析:(1)先證△ABC≌△DEF,得出∠ACB=∠DFE,故∠ACF=∠DFC,即可得到結(jié)論;
(2)根據(jù)平移和旋轉(zhuǎn)描述圖形變換過(guò)程即可.
試題解析:(1)∵AB∥DE,∴∠B=∠E,∵BF=CE,∴BF﹣FC=CE﹣FC,即BC=EF,在△ABC和△DEF中,∵AB=DE,∠B=∠E,BC=EF,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴∠ACF=∠DFC,∴AC∥DF;
(2)△ABC先向右平移1個(gè)單位長(zhǎng)度,再繞點(diǎn)C旋轉(zhuǎn)180°即可得到△DEF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是線段AB和線段CD的中點(diǎn).
(1)求證:△AOD≌△BOC;
(2)求證:AD∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G、E分別是邊AB、BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平方線CF于點(diǎn)F.
(1)證明:△AGE≌△ECF;
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MAN=135°,正方形ABCD繞點(diǎn)A旋轉(zhuǎn).
(1)當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的外部(頂點(diǎn)A除外)時(shí),AM,AN分別與正方形ABCD的邊CB,CD的延長(zhǎng)線交于點(diǎn)M,N,連接MN.
①如圖1,若BM=DN,則線段MN與BM+DN之間的數(shù)量關(guān)系是 ;
②如圖2,若BM≠DN,請(qǐng)判斷①中的數(shù)量關(guān)系是否仍成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(2)如圖3,當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的內(nèi)部(頂點(diǎn)A除外)時(shí),AM,AN分別與直線BD交于點(diǎn)M,N,探究:以線段BM,MN,DN的長(zhǎng)度為三邊長(zhǎng)的三角形是何種三角形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC、∠ACB的平分線相交于F,過(guò)F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論:①△BDF、△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.正確的有 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com