【題目】已知△ABC為等邊三角形,BD為中線,延長BCE,使CE=CD=1,連接DE,求DE的長.

【答案】DE=

【解析】

根據(jù)等邊三角形的性質(zhì)可得∠ABC=ACB=60°,AC=BC,∠DBC=ABC=30°,∠BDC=90°,AD=CD=AC,再證明∠E=30°=DBC,根據(jù)等腰三角形的性質(zhì)可得BD=DE,在RtBDC中,BC=2,CD=1,根據(jù)勾股定理求得BD=,即可求得DE=.

∵△ABC為等邊三角形,

∴∠ABC=ACB=60°,AC=BC,

BD為中線,

∴∠DBC=ABC=30°,∠BDC=90°,AD=CD=AC,

CD=CE=1,

∴∠E=CDEAC=BC=2,

∵∠E+CDE=ACB=60°,

∴∠E=30°=DBC

BD=DE,

RtBDC中,BC=2CD=1,

根據(jù)勾股定理求得BD=,

DE=BD=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學庫存若干套桌椅,準備修理后支援貧困山區(qū)學!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨修完這些桌椅比乙單獨修完多用20天,學校每天付甲組80元修理費,付乙組120元修理費。

(1)該中學庫存多少套桌椅?

(2)在修理過程中,學校要派一名工人進行質(zhì)量監(jiān)督,學校負擔他每天10元生活補助費,現(xiàn)有三種修理方案:a、由甲單獨修理;b、由乙單獨修理;c、甲、乙合作同時修理。你認為哪種方案省時又省錢?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的面積為,、分別是,上的點,且,.連接,交于點,連接并延長交于點.則四邊形的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】C點的坐標為(4,4),Ay軸負半軸上一動點,連CA,CBCAx軸于B

1)求OBOA的值;

2Ex軸正半軸上,Dy軸負半軸上,∠DCE45°,轉(zhuǎn)動∠DCE,求線段BE、DEAD之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導光盤行動,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

(1)這次被調(diào)查的同學共有  ;

(2)補全條形統(tǒng)計圖,并在圖上標明相應的數(shù)據(jù);

(3)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供50人食用一餐據(jù)此估算,該校18 000名學生一餐浪費的食物可供多少人食用一餐

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCD中,EBC邊上一點,且AEDC延長線于F,連接BF,下列關于面積的結論中錯誤的是( )

A.SABF =SADEB.SABF =SADF

C.SABF=SABCDD.SADE=SABCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:順次連接矩形A1B1C1D1四邊的中點得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形AnBnCnDn的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店出售書包和文具盒,書包每個定價30元,文具盒每個定價5元.該店制定了兩種優(yōu)惠方案.

方案1:買一個書包贈送一個文具盒;

方案2:按總價的9折(總價的90%)付款.

某班學生需購買8個書包,文具盒若干(不少于8個),如果設文具盒數(shù)為x(個),付款數(shù)為y(元).

1)分別求出兩種優(yōu)惠方案中yx之間的關系式;

2)購買文具盒多少個時兩種方案付款相同;購買文具盒數(shù)大于8個時,兩種方案中哪一種更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,圖(a)是一塊邊長為1,周長記為的正三角形紙板,沿圖(a)的底邊剪去一塊邊長為的正三角形紙板后得到圖(b),然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪掉正三角形紙板邊長的后,得圖(c),(d),……,記第)塊紙板的周長為Pn.則____;_______

查看答案和解析>>

同步練習冊答案