已知:如圖,在?ABCD中,E是CA延長(zhǎng)線上的點(diǎn),F(xiàn)是AC延長(zhǎng)線上的點(diǎn),且AE=CF.求證:
(1)△ABE≌△CDF;
(2)BE∥DF.

【答案】分析:(1)根據(jù)平行四邊形的性質(zhì)可得出AB=CD,∠BAE=∠DCF,結(jié)合AE=CF即可證明三角形全等.
(2)根據(jù)全等三角形的性質(zhì)可得出∠E=∠F,繼而可判斷平行.
解答:解:(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∵∠BAC+∠BAE=∠DCA+∠DCF=180°,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF;

(2)∵△ABE≌△CDF,
∴∠E=∠F,
∴BE∥DF.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì),屬于基礎(chǔ)題,解答本題需要我們熟練掌握平行四邊形的對(duì)邊相等且互補(bǔ),難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案