【題目】如圖,∠AOB是平角,OD是∠AOC的角平分線,∠COE=∠BOE.
(1)若∠AOC= 50°,則∠DOE= °;
(2)當∠AOC的大小發(fā)生改變時,∠DOE的大小是否發(fā)生改變?為什么?
(3)圖中與∠COD互補角的個數(shù)隨∠AOC的度數(shù)變化而變化,直接寫出與∠COD互補的角的個數(shù)及對應(yīng)的∠AOC的度數(shù).
【答案】(1)90°;(2)不發(fā)生改變,∠DOE=90°,理由見解析;(3)∠AOC=90°時,存在與∠COD互補的角有三個分別為∠BOD、∠BOE,∠COE,.∠AOC=120°時,存在與∠COD互補的角有兩個分別為∠BOD、∠AOC.∠AOC其它角度時,存在與∠COD互補的角有一個為∠BOD.
【解析】
(1)根據(jù)補角的定義,可以推斷出∠BOC的度數(shù),由∠COE=∠BOE,可以求出∠COE和∠BOE的度數(shù),根據(jù)角平分線的性質(zhì)和∠AOC的度數(shù),可以求出∠COD的度數(shù),從而求出∠DOE的度數(shù),可以推斷出∠AOC=∠AOE,在根據(jù)角平分線的性質(zhì),可以得到∠AOD=∠COD,得出∠AOD的度數(shù),即可解決.
(2)設(shè)∠AOC的度數(shù)為2x,用含x的式子表示出∠DOE,看是否是一個定值,然后判斷即可.
(3)因為OD是∠AOC的角平分線,所以,求與∠COD互補的角,即求與∠AOD互補的角,根據(jù)題目中的角的關(guān)系判斷寫出即可.
(1)
又∵OD是∠AOC的角平分線
;
(2)不發(fā)生改變,設(shè)∠AOC=2x.
∵OD是∠AOC的平分線
∴∠AOD=∠COD=x
∠BOC=180° 2x
∵∠COE=∠BOE
∴∠COE==90°+x
∴∠DOE=90°+x x=90°
(3)∠AOC=90°時,存在與∠COD互補的角有三個分別為∠BOD、∠BOE,∠COE,如圖
∠AOC=120°時,存在與∠COD互補的角有兩個分別為∠BOD、∠AOC.如圖
∠AOC其它角度時,存在與∠COD互補的角有一個為∠BOD.如圖:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB=CD,AB與CD相交于點O,且∠AOC=60°,CE是由AB平移所得,AC與BD不平行,則AC+BD與AB的大小關(guān)系是:AC+BD_____AB.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=3,AB=5,點O在BC邊的中線AD上,⊙O與BC相切于點E,且∠OBA=∠OBC.
(1)求證:AB為⊙O的切線;
(2)求⊙O的半徑;
(3)求tan∠BAD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級共有500名學生,團委準備調(diào)查他們對“低碳”知識的了解程度,
(1)在確定調(diào)查方式時,團委設(shè)計了以下三種方案:
方案一:調(diào)查七年級部分女生;
方案二:調(diào)查七年級部分男生;
方案三:到七年級每個班去隨機調(diào)查一定數(shù)量的學生
請問其中最具有代表性的一個方案是 ;
(2)團委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將其補充完整;
(3)請你估計該校七年級約有多少名學生比較了解“低碳”知識.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線分別交x軸、y軸于A、B兩點,拋物線經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市預(yù)測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以點A為頂點作兩個等腰直角三角形(△ABC,△ADE),如圖所示放置,使得一直角邊重合,連接BD,CE.
(1)求證:BD=CE;(2)延長BD,交CE于點F,求∠BFC的度數(shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com