【題目】如圖,已知FGABCDAB,垂足分別為GD,∠1=∠2

求證:∠CED+ACB180°,

請你將小明的證明過程補充完整.

證明:∵FGAB,CDAB,垂足分別為G,D(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已證)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

【答案】見解析.

【解析】

根據(jù)同位角相等兩直線平行可得GFCD,然后根據(jù)兩直線平行同位角相等得出∠2=BCD,根據(jù)已知進一步得出∠1=BCD,即可證得DEBC,得出∠CED+ACB=180°.

證明:∵FGAB,CDAB,垂足分別為G,D(已知)

∴∠FGB=∠CDB90°(垂直定義)

GFCD(同位角相等,兩直線平行),

GFCD(已證),

∴∠2=∠BCD(兩直線平行,同位角相等),

又∵∠1=∠2(已知)

∴∠1=∠BCD(等量代換),

DEBC(內(nèi)錯角相等,兩直線平行)

∴∠CED+ACB180°(兩直線平行,同旁內(nèi)角互補),

故答案為:垂直定義;同位角相等,兩直線平行;兩直線平行,同位角相等;等量代換;DEBC;內(nèi)錯角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】20191月重慶湖童時裝周在重慶渝北舉行了八場走秀,云集了八大國內(nèi)外潮童品牌,不僅為大家?guī)砹艘粓銎放谱咝闶,更讓人們將目光轉(zhuǎn)移到了后、后童模群體身上,開啟服裝新秀湖流.某大型商場抓住這次商機購進兩款新童裝進行試銷售,該商場用元購買款童裝,用元購買款童裝,且每件款童裝進價與每件款童裝進價相同,購買款童裝的數(shù)量比款童裝的數(shù)量少件,若該商場本次以每件款童裝按進價加價元進行銷售,每件款童裝按進價加價進行銷售,全部銷售完.

1)求購進兩款童裝各多少件?

2)春節(jié)期間該商場按上次進價又購進與上一次一樣數(shù)量的兩款童裝,并展開了降價促銷活動,在促銷期間,該商場將每件款童裝按進價提高進行銷售,每件款童裝按上次售價降低銷售.結(jié)果全部銷售完后銷售利潤比上次利潤少了元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖1,線段ABCD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問題:

1)在圖1中,寫出∠A,∠B,∠C,∠D之間的關(guān)系為

2)如圖2,在圖1的結(jié)論下,∠DAB和∠BCD的平分線APCP相交于點P,并且與CD、AB分別相交于M、N

①仔細觀察,在圖2中“8字形”的個數(shù):______個;

②若,,試求∠P的度數(shù);

③∠B和∠D為任意角時,其他條件不變,試直接寫出∠P與∠B,∠D之間的數(shù)量關(guān)系,不需要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為(

A.13
B.15
C.17
D.19

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC的平分線與BC邊的垂直平分線相交于點P,過點P作AB、AC(或延長線)的垂線,垂足分別是M、N,求證:BM=CN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要在寬為22米的九州大道AB兩邊安裝路燈,路燈的燈臂CD長2米,且與燈柱BC成120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當燈罩的軸線DO通過公路路面的中心線時照明效果最佳,此時,路燈的燈柱BC高度應該設(shè)計為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛經(jīng)營長途運輸?shù)呢涇囋诟咚俟返?/span>A處加滿油后,以每小時80千米的速度勻速行駛,前往B地,如表記錄的是貨車一次加滿油后油箱內(nèi)余油量y(升)與行駛時間x(時)之間的關(guān)系:

行駛時間x/

0

1

2

2.5

余油量y/

100

80

60

50

yx的函數(shù)關(guān)系式為_____,自變量x的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線相交于點O,且點OBD的中點,若ABAD5,BD8,∠ABD=∠CDB,則四邊形ABCD的面積為( 。

A.40B.24C.20D.15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c的頂點為B(﹣1,3),與x軸的交點A在點(﹣3,0)和(﹣2,0)之間,以下結(jié)論:
①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3
其中正確的有( )個.

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案