【題目】如圖,拋物線與軸交于點,,把拋物線在軸及其上方的部分記作,將向右平移得,與軸交于點,,若直線與,共有個不同的交點,則的取值范圍是________.
【答案】
【解析】
首先求出點A和點B的坐標(biāo),然后求出C2解析式,分別求出直線y=x+m與拋物線C2相切時m的值以及直線y=x+m過點B時m的值,結(jié)合圖形即可得到答案.
令y=-2x2+8x-6=0,即x2-4x+3=0,解得x=1或x=3,則點A(1,0),B(3,0)由于C1向右平移兩個長度單位得C2,則C2解析式為y=-2(x-4)2+2(3≤x≤5),當(dāng)y=x+m1與C2相切時,令y=x+m1=y=-2(x-4)2+2,即2x2-15x+30+m1=0,△=-8m1-15=0,解得m1=-,當(dāng)y=x+m2過點B時,即0=3+m2,m2=-3,當(dāng)-3<m<-時直線y=x+m與C1、C2共有3個不同交點,故答案是-3<m<-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三位數(shù)滿足條件:其十位數(shù)字是百位數(shù)字的兩倍與個位數(shù)字的差,則稱這樣的三位數(shù)為“十全數(shù)”,將“十全數(shù)”s的百位數(shù)字與十位數(shù)字交換位置,交換后所得的新數(shù)叫做s的“十美數(shù)”,如231是一個“十全數(shù)”,321是231的“十美數(shù)”
(1)證明:任意一個“十全數(shù)”s的“十美數(shù)”都能被3整除;
(2)已知m為“十全數(shù)”,n是m的“十美數(shù)”,若m的兩倍與n的差能被13整除,求m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結(jié)論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BCAD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )
A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋里裝有16個只有顏色不同的球,其中紅球有x個,白球有2x個,其他均為黃球,現(xiàn)甲從布袋中隨機摸出一個球,若是紅球則甲同學(xué)獲勝,甲同學(xué)把摸出的球放回并攪勻,由乙同學(xué)隨機摸出一個球,若為黃球,則乙同學(xué)獲勝。
(1)當(dāng)X=3時,誰獲勝的可能性大?
(2)當(dāng)x為何值時,游戲?qū)﹄p方是公平的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,,,動點從點出發(fā),以每秒個單位的速度沿方向向終點運動;同時,動點也從點出發(fā),以每秒個單位的速度沿方向向終點運動.設(shè)兩點運動的時間為秒.
連接,在點、運動過程中,與是否始終相似?請說明理由;
連接,設(shè)的面積為,求關(guān)于的函數(shù)關(guān)系式;
連接、,是否存在的值,使?若存在,求出的值;若不存在,請說明理由;
探索:把沿直線折疊成,設(shè)與交于點,當(dāng)是直角三角形時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給的網(wǎng)格圖中,完成下列各題(用直尺畫圖,否則不給分)
(1)畫出格點△ABC關(guān)于直線DE的對稱的△A1B1C1;
(2)在DE上畫出點P,使PA+PC最;
(3)在DE上畫出點Q,使QA﹣QB最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知、、都是實數(shù),且,則
A. 只有最大值 B. 只有最小值
C. 既有最大值又有最小值 D. 既無最大值又無最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P(a,b)和點Q(a,b'),給出如下定義:
若b'=,則稱點Q為點P的限變點.例如:點(3,﹣2)的限變點的坐標(biāo)是(3,﹣2),點(﹣1,5)的限變點的坐標(biāo)是(﹣1,﹣5).
(1)①點(﹣,1)的限變點的坐標(biāo)是 ;
②在點A(﹣1,2),B(﹣2,﹣1)中有一個點是函數(shù)y=圖象上某一個點的限交點,這個點是 ;
(2)若點P在函數(shù)y=﹣x+3的圖象上,當(dāng)﹣2≤x≤6時,求其限變點Q的縱坐標(biāo)b'的取值范圍;
(3)若點P在關(guān)于x的二次函數(shù)y=x2﹣2tx+t2+t的圖象上,其限變點Q的縱坐標(biāo)b'的取值范圍是b'≥m或b'<n,其中m>n.令s=m﹣n,求s關(guān)于t的函數(shù)解析式及s的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com