【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長(zhǎng).

【答案】
(1)

證明:∵ED=EC,

∴∠EDC=∠C,

∵∠EDC=∠B,

∴∠B=∠C,

∴AB=AC


(2)

解:連接AE,

∵AB為直徑,

∴AE⊥BC,

由(1)知AB=AC,

∴BE=CE= BC=

∵CECB=CDCA,AC=AB=4,

2 =4CD,

∴CD=


【解析】(1)由等腰三角形的性質(zhì)得到∠EDC=∠C,由圓外接四邊形的性質(zhì)得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可證得結(jié)論;(2)連接AE,由AB為直徑,可證得AE⊥BC,由(1)知AB=AC,由“三線合一”定理得到BE=CE= BC= ,由割線定理可證得結(jié)論.本題考查了圓周角定理,等腰三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(0,5),點(diǎn)P(m,5)在第二象限,連接AP、OP

(1) 如圖1,若OP=6,求m的值

(2) 如圖2,點(diǎn)Cx軸負(fù)半軸上,以CP為斜邊作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中點(diǎn)D,連接AD、BD,求證:AD=BD

(3) 如圖3,將△AOP沿直線OP翻折得到△EOP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E).若點(diǎn)Ex軸的距離不大于3,直接寫出m的取值范圍(無需解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)若點(diǎn)P(m,n)為線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,問:

①若△PAO的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;

②是否存在點(diǎn)P,使EF的值最?若存在,求出EF的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A,B的坐標(biāo)分別為( ,0),(0,1),把Rt△AOB沿著AB對(duì)折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.

(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;

(2)若菱形ABEF的周長(zhǎng)為16,AE=4,求C的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技館對(duì)學(xué)生參觀實(shí)行優(yōu)惠,個(gè)人票為每張6元,另有團(tuán)體票可售,票價(jià)45元,每票最多限10人入館參觀.

(1)如果參觀的學(xué)生人數(shù)36人,至少應(yīng)付多少元?

(2)如果參觀的學(xué)生人數(shù)為48人,至少應(yīng)付多少元?

(3)如果參觀的學(xué)生人數(shù)為一個(gè)兩位數(shù)(a表示十位上的數(shù)字,b表示個(gè)位上的數(shù)字),用含a、b的代數(shù)式表示至少應(yīng)付給科技館的總金額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列科學(xué)計(jì)算器的按鍵中,其上面標(biāo)注的符號(hào)是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1

1)求3A+6B

2)若3A+6B的值與x無關(guān),求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-x+2x、y軸分別交于點(diǎn)A和點(diǎn)B,另一直線y=kx+b(k≠0)經(jīng)過點(diǎn)C(1,0),且把△AOB分成兩部分.

(1)△AOB被分成的兩部分面積相等,kb的值;

(2)△AOB被分成的兩部分面積比為1∶5,kb的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案