【題目】下列科學(xué)計(jì)算器的按鍵中,其上面標(biāo)注的符號(hào)是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是( )
A.
B.
C.
D.
【答案】D
【解析】解:A、是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
B、不是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
C、是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)正確.
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解軸對(duì)稱圖形的相關(guān)知識(shí),掌握兩個(gè)完全一樣的圖形關(guān)于某條直線對(duì)折,如果兩邊能夠完全重合,我們就說這兩個(gè)圖形成軸對(duì)稱,這條直線就對(duì)稱軸,以及對(duì)中心對(duì)稱及中心對(duì)稱圖形的理解,了解如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是BC的中點(diǎn),BE=,AD=.
(1)求線段BC、AB的長;
(2)求線段AC的長;
(3)求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF= ,BD=2,則菱形ABCD的面積為( )
A.2
B.
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家(記為A)、他上學(xué)的學(xué)校(記為B)、書店(記為C)依次坐落在一條東西走向的大街上,小明家位于學(xué)校西邊250米處,書店位于學(xué)校東邊100米處,小明中午放學(xué)后,到書店買本輔導(dǎo)書,然后回家吃中午飯,下午直接去學(xué)校上課.
(1)試用數(shù)軸表示出小明家(A)、學(xué)校(B)、書店(C)的位置;
(2)計(jì)算出小明家與書店的距離;
(3)小明從中午放學(xué)離校到下午上學(xué)到校一共走了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點(diǎn)A(8,0),與y軸分別交于點(diǎn)B(0,4)和點(diǎn)C(0,16),則圓心M到坐標(biāo)原點(diǎn)O的距離是( 。
A.10
B.8
C.4
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長,分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com