【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB .
【答案】
(1)
解:依題意: ,
解得
∴拋物線的解析式為y=﹣x2+4x+5
(2)
解:令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,
∴B(5,0).
由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)
作ME⊥y軸于點(diǎn)E,
可得S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC= (2+5)×9﹣ ×4×2﹣ ×5×5=15.
【解析】(1)將已知的三點(diǎn)坐標(biāo)代入拋物線中,即可求得拋物線的解析式.(2)可根據(jù)拋物線的解析式先求出M和B的坐標(biāo),由于三角形MCB的面積無法直接求出,可將其化為其他圖形面積的和差來解.過M作ME⊥y軸,三角形MCB的面積可通過梯形MEOB的面積減去三角形MCE的面積減去三角形OBC的面積求得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)△ABC不動(dòng),將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°,證明:四邊形ACDM是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b為實(shí)數(shù),且b= ,
(1)求 的值;
(2)若 的值是關(guān)于x的一元二次方程x2﹣2x+k2+k=0的一個(gè)根;求k及另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 . 其中正確的結(jié)論有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, ,∠COD=32°,則∠AEO的度數(shù)是( )
A.48°
B.51°
C.56°
D.58°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)實(shí)踐活動(dòng)小組要測(cè)量學(xué)校附近樓房CD的高度,在水平地面A處安置測(cè)傾器測(cè)得樓房CD頂部點(diǎn)D的仰角為45°,向前走20米到達(dá)A′處,測(cè)得點(diǎn)D的仰角為67.5°,已知測(cè)傾器AB的高度為1.6米,則樓房CD的高度約為(結(jié)果精確到0.1米, ≈1.414)( )
A.34.14米
B.34.1米
C.35.7米
D.35.74米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AC=12cm,BD=16cm,動(dòng)點(diǎn)N從點(diǎn)D出發(fā),沿線段DB以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從點(diǎn)B出發(fā),沿線段BA以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(t>0),以點(diǎn)M為圓心,MB長(zhǎng)為半徑的⊙M與射線BA,線段BD分別交于點(diǎn)E,F(xiàn),連接EN.
(1)求BF的長(zhǎng)(用含有t的代數(shù)式表示),并求出t的取值范圍;
(2)當(dāng)t為何值時(shí),線段EN與⊙M相切?
(3)若⊙M與線段EN只有一個(gè)公共點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3 , …組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長(zhǎng)度,則第2017秒時(shí),點(diǎn)P的坐標(biāo)是( )
A.(2016,0)
B.(2017,1)
C.(2017,﹣1)
D.(2018,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,D是 上一點(diǎn),OD⊥BC,垂足為H.
(1)如圖1,當(dāng)圓心O在AB邊上時(shí),求證:AC=2OH;
(2)如圖2,當(dāng)圓心O在△ABC外部時(shí),連接AD、CD,AD與BC交于點(diǎn)P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點(diǎn),連接DE交BC于點(diǎn)Q、交AB于點(diǎn)N,連接OE,BF為⊙O的弦,BF⊥OE于點(diǎn)R交DE于點(diǎn)G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com