【題目】如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是

【答案】4m
【解析】解:設(shè)路燈的高度為xm,

∵EF∥AD,

∴△BEF∽△BAD,

= ,

= ,

解得DF=x﹣1.8,

∵MN∥AD,

∴△CMN∽△CAD,

= ,

= ,

解得DN=x﹣1.5,

∵兩人相距4.7m,

∴FD+ND=4.7,

∴x﹣1.8+x﹣1.5=4.7,

解得x=4,

所以答案是:4m.

【考點精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用和中心投影的相關(guān)知識可以得到問題的答案,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解;手電筒、路燈和臺燈的光線可以看成是從一個點發(fā)出的,這樣的光線所形成的投影稱為中心投影;作一物體中心投影的方法:過投影中心與物體頂端作直線,直線與投影面的交點與物體的底端之間的線段即為物體的影子.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校百變魔方社團準備購買兩種魔方.已知購買2個種魔方和6個種魔方共需130元,購買3個種魔方和4個種魔方所需款數(shù)相同.

(1)求這兩種魔方的單價;

(2)結(jié)合社員們的需求,社團決定購買兩種魔方共100個(其中種魔方不超過50個).某商店有兩種優(yōu)惠活動,如圖所示.

請根據(jù)以上信息,說明選擇哪種優(yōu)惠活動購買魔方更實惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為原點,已知數(shù)軸上點A和點B所表示的數(shù)分別為8,動點M從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時動點N從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t秒.

時,______個單位長度,______個單位長度,此時MN的中點C所對應(yīng)的有理數(shù)為______

在運動過程中,當時,求點M所對應(yīng)的有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答下列各題:
(1)x取何值時,代數(shù)式3x+2的值不大于代數(shù)式4x+3的值?

(2)當m為何值時,關(guān)于x的方程 x-1=m的解不小于3?

(3)已知不等式2(x+3)-4<0, 化簡:︳4x+1︱-︱2-4x︱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊥x軸于點A,點B在y軸的正半軸上,∠ABC=60°,AB=4,BC=2 ,點D為AC與反比例函數(shù)y= 的圖象的交點.若直線BD將△ABC的面積分成1:2的兩部分,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有兩個不相等的實數(shù)根.
(1)求實數(shù)k的取值范圍;
(2)設(shè)方程的兩個實數(shù)根分別為x1、x2 , 存不存在這樣的實數(shù)k,使得|x1|﹣|x2|= ?若存在,求出這樣的k值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B是線段AC上一點,AC=4AB,AB=6cm,直線MN經(jīng)過線段BC的中點P

1)圖中共有線段______條,圖中共有射線______條.

2)圖中有______組對頂角,與∠MPC互補的角是______

3)線段AP的長度是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1y2x+1、直線l2y=﹣x+7,直線l1、l2分別交x軸于B、C兩點,l1、l2相交于點A

1)求AB、C三點坐標;

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是線段AB上任一點,AB=12 cm,C、D兩點分別從P、B同時向A點運動,且C點的運動速度為2 cm/s,D點的運動速度為3 cm/s,運動的時間為t s.

(1)若AP=8 cm.

①運動1 s后,求CD的長;

②當D在線段PB運動上時,試說明AC=2CD;

(2)如果t=2 s時,CD=1 cm,試探索AP的值.

查看答案和解析>>

同步練習(xí)冊答案