如圖,以點M(5,3)為圓心的⊙M切y軸于點A,與x軸交于B(1,0),C兩點(點B在點C的左側(cè)),直線l過圓心M且垂直于y軸,點P是直線l上的一個動點,如果△PAB的周長最小,那么此時點P的坐標(biāo)是________.

(5,
分析:連接AM,由切線的性質(zhì)可知,AM⊥y軸,根據(jù)M點的坐標(biāo)可求出AM及MD的長,作點A關(guān)于直線l的對稱點A′,連接A′B,則線段A′B的長即為△PAB的最小周長,再用待定系數(shù)法求出直線A′B的解析式,得出此直線與直線l的交點坐標(biāo)即可.
解答:解:連接AM,
∵⊙M切y軸于點A,
∴AM⊥y軸,
∵M(jìn)(5,3),l⊥x軸,
∴AM=5,MD=3,直線l的解析式為l=5,
作點A關(guān)于直線l的對稱點A′,則A′(10,3),連接A′B,則線段A′B的長即為△PAB的最小周長,
設(shè)過點A′、B的直線解析式為y=kx+b(k≠0),則,解得
∴此直線的解析式為:y=x-,
∴當(dāng)x=5時,y=×5-=,
∴點P的坐標(biāo)是(5,).
故答案為:(5,).
點評:本題考查的是軸對稱-最短路線問題,熟知“兩點之間,線段最短”的知識是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以點O′(1,1)為圓心,OO′為半徑畫圓,判斷點P(-1,1),點Q(1,0),點R(2,2)和⊙O′的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,以點B為頂點,射線BC為一邊,利用尺規(guī)作∠EBC,使得∠EBC=∠A.EB與AD一定平行嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,以點B為中心,把△ABC旋轉(zhuǎn)180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以點O為圓心的兩個同心圓,當(dāng)大圓的弦AB與小圓相切時弦長AB=8,則這兩個同心圓所形成的圓環(huán)的面積是
16π
16π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以點M(5,3)為圓心的⊙M切y軸于點A,與x軸交于B(1,0),C兩點(點B在點C的左側(cè)),直線l過圓心M且垂直于y軸,點P是直線l上的一個動點,如果△PAB的周長最小,那么此時點P的坐標(biāo)是
(5,
4
3
(5,
4
3

查看答案和解析>>

同步練習(xí)冊答案