【題目】如圖,,平分,過(guò)點(diǎn),連接,若,,求,的長(zhǎng).

【答案】BD=,DN=

【解析】

由平行線的性質(zhì)可證∠MBD=BDC,即可證AM=MD=MB=4,由BD2=ADCD可得BD長(zhǎng),再由勾股定理可求MC的長(zhǎng),通過(guò)證明△MNB∽△CND,可得,即可求DN的長(zhǎng).

解:∵BMCD
∴∠MBD=BDC
∴∠ADB=MBD,且∠ABD=90°
BM=MD,∠MAB=MBA
BM=MD=AM=4

平分,

∴∠ADB=CDB,

∴△ABD∽△BCD,
BD2=ADCD

CD=6,AD=8,
BD2=48,

BD=
BC2=BD2-CD2=12
MC2=MB2+BC2=28
MC=,

BMCD
∴△MNB∽△CND,

,且BD=,

∴設(shè)DN=x

則有,

解得x=,

DN=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提升學(xué)生的藝術(shù)素養(yǎng),某校計(jì)劃開(kāi)設(shè)四門選修課程:聲樂(lè)、舞蹈、書法、攝影.要求每名學(xué)生必須選修且只能選修一門課程,為保證計(jì)劃的有效實(shí)施,學(xué)校隨機(jī)對(duì)部分學(xué)生進(jìn)行了一次調(diào)查,并將調(diào)査結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

學(xué)生選修課程統(tǒng)計(jì)表

課程

人數(shù)

所占百分比

聲樂(lè)

14

舞蹈

8

書法

16

攝影

合計(jì)

根據(jù)以上信息,解答下列問(wèn)題:

1  ,  

2)求出的值并補(bǔ)全條形統(tǒng)計(jì)圖.

3)該校有1500名學(xué)生,請(qǐng)你估計(jì)選修“聲樂(lè)”課程的學(xué)生有多少名.

4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學(xué)校準(zhǔn)備從這4人中隨機(jī)抽取2人編排“舞蹈”在開(kāi)班儀式上表演,請(qǐng)用列表法或畫樹(shù)狀圖的方法求所抽取的2人恰好來(lái)自同一個(gè)班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)和一次函數(shù)

(1)當(dāng)t=0時(shí),試判斷二次函數(shù)的圖象與x軸是否有公共點(diǎn),如果有,請(qǐng)寫出公共點(diǎn)的坐標(biāo);

(2)若二次函數(shù)的圖象與x軸的兩個(gè)不同公共點(diǎn),且這兩個(gè)公共點(diǎn)間的距離為8,求t的值;

(3)求證:不論實(shí)數(shù)t取何值,總存在實(shí)數(shù)x,使

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為1的正方形紙片ABCD折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)M落在邊CD上(不與點(diǎn)C、D重合),折痕為EF,AB的對(duì)應(yīng)線段MGAD于點(diǎn)N.以下結(jié)論正確的有(  )①∠MBN45°;②MDN的周長(zhǎng)是定值;③MDN的面積是定值.

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)θ0°≤θ≤360°),得到矩形AEFG

1)當(dāng)點(diǎn)EBD上時(shí),求證:AFBD

2)當(dāng)GCGB時(shí),求θ

3)當(dāng)AB10,BGBC13時(shí),求點(diǎn)G到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與直線相交于,兩點(diǎn),且拋物線經(jīng)過(guò)點(diǎn)

1)求拋物線的解析式.

2)點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)點(diǎn)重合),過(guò)點(diǎn)作直線軸于點(diǎn),交直線于點(diǎn).當(dāng)時(shí),求點(diǎn)坐標(biāo);

3)如圖所示,設(shè)拋物線與軸交于點(diǎn),在拋物線的第一象限內(nèi),是否存在一點(diǎn),使得四邊形的面積最大?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線ykx2kk0)的與y軸交于點(diǎn)A,與x軸交于點(diǎn)B

1)如圖1,求點(diǎn)B的坐標(biāo);

2)如圖2,第一象限內(nèi)的點(diǎn)C在經(jīng)過(guò)B點(diǎn)的直線y-x+b上,CDy軸于點(diǎn)D,連接BD,若SABD2k+2,求C點(diǎn)的坐標(biāo)(用含k的式子表示);

3)如圖3,在(2)的條件下,連接OC,交直線AB于點(diǎn)E,若3ABD﹣∠BCO45°,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中.直線y=﹣x+3與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,拋物線y=ax2+bx+c經(jīng)過(guò)B,C兩點(diǎn),與x軸負(fù)半軸交于點(diǎn)A,連結(jié)AC,A(-1,0)

(1)求拋物線的解析式;

(2)點(diǎn)P(m,n)是拋物線上在第一象限內(nèi)的一點(diǎn),求四邊形OCPB面積S關(guān)于m的函數(shù)表達(dá)式及S的最大值;

(3)若M為拋物線的頂點(diǎn),點(diǎn)Q在直線BC上,點(diǎn)N在直線BM上,Q,M,N三點(diǎn)構(gòu)成以MN為底邊的等腰直角三角形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙M的半徑為4,圓心M的坐標(biāo)為(6,8),點(diǎn)P是⊙M上的任意一點(diǎn),PAPB,且PA、PBx軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則AB的最小值為____

查看答案和解析>>

同步練習(xí)冊(cè)答案