【題目】如圖,已知E是正方形ABCD對角線AC上的一點,AE=AD,過點E作AC的垂線,交邊CD于點F,∠FAD=度.
【答案】22.5
【解析】解:∵四邊形ABCD是正方形, ∴∠D=∠BAD=90°,∠DAC=45°,
∵EF⊥AC,
∴∠AEF=∠D=90°,
在Rt△AFE和Rt△AFD中,
,
∴Rt△AFE≌Rt△AFD,
∴∠FAD=∠FAE=22.5°,
所以答案是22.5.
【考點精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義運算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的兩根,則bb﹣aa的值為( )
A.0
B.1
C.2
D.與m有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側(cè).
(1)如圖1,當(dāng)k=1時,直接寫出A,B兩點的坐標(biāo);
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標(biāo);
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點C、D兩點(點C在點D的左側(cè)),拋物線在x軸下方的部分沿x軸翻折得到與原拋物線剩余的部分組成如圖所示的圖形,若直線y=kx+1與這個圖形只有兩個公共點,請求出此時k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元
(1)A商品的單價是元,B商品的單價是元
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,設(shè)購買A商品的件數(shù)為x件,該商店購買的A、B兩種商品的總費用為y元 ①求y與x的函數(shù)關(guān)系式
②如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,求購買B商品最多有多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過點(﹣2,3)的直線l經(jīng)過一、二、三象限,若點(0,a),(﹣1,b),(c,﹣1)都在直線l上,則下列判斷正確的是( )
A.a<b
B.a<3
C.b<3
D.c<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D為等腰直角△ABC內(nèi)一點,∠CAD=∠CBD=15°,E為AD延長線上的一點,且CE=CA.
(1)求證:DE平分∠BDC;
(2)若點M在DE上,且DC=DM,求證:ME=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯子斜靠在與地面垂直(垂足為O)的墻上,當(dāng)梯子位于AB位置時,它與地面所成的角∠ABO=60°;當(dāng)梯子底端向右滑動1m(即BD=1m)到達CD位置時,它與地面所成的角∠CDO=45°,求梯子的長(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:
已知:直線l和l外一點P.(如圖1)
求作:直線l的垂線,使它經(jīng)過點P.
作法:如圖2(1)在直線l上任取兩點A,B;(2)分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;(3)作直線PQ.
所以直線PQ就是所求的垂線.
請回答:該作圖的依據(jù)是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com