【題目】已知AB兩地相距4km,上午800時,亮亮從A地步行到B地,820時芳芳從B地出發(fā)騎自行車到A地,亮亮和芳芳兩人離A地的距離Skm)與亮亮所用時間tmin)之間的函數(shù)關(guān)系如圖所示,芳芳到達(dá)A地時間為(

A. 830 B. 835 C. 840 D. 845

【答案】C

【解析】

根據(jù)題意可知:亮亮距離A地的距離隨著時間的增大而增大,芳芳8點至820分由于沒出發(fā),S=4km,820分后芳芳往A地走,S隨著時間的增大而減小.然后根據(jù)條件分別求出亮亮與芳芳St的函數(shù)關(guān)系式可得答案.

解:設(shè)亮亮S與的函數(shù)關(guān)系式為:S=mt(0t60),t=60,S=4代入S=mt,

4=60m,m=,

S=t,

當(dāng)S=2,此時t=30,

設(shè)芳芳St的函數(shù)關(guān)系式為:S=at+b(t20),t=30,S=2t=20,S=4代入S=at+b,

得:解得:

S=t+8,

S=0代入S=-5t+8,

t=40,故芳芳到達(dá)A地的時間為840

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標(biāo)為(﹣1,0),點O為坐標(biāo)原點,OC=3OA,拋物線C1的頂點為G.

(1)求出拋物線C1的解析式,并寫出點G的坐標(biāo);

(2)如圖2,將拋物線C1向下平移k(k0)個單位,得到拋物線C2,設(shè)C2與x軸的交點為A′、B′,頂點為G′,當(dāng)A′B′G′是等邊三角形時,求k的值:

(3)在(2)的條件下,如圖3,設(shè)點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線C1、C2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與AOQ全等,若存在,直接寫出點M,N的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,已知的直徑AB=12cm,AC是的弦,過點C作的切線交BA的延長線于點P,連接BC

(1)求證:PCA=B

(2)已知P=40°,點Q在優(yōu)弧ABC上,從點A開始逆時針運動到點C停止(點Q與點C不重合),當(dāng)ABQ與ABC的面積相等時,求動點Q所經(jīng)過的弧長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,滑動調(diào)節(jié)式遮陽傘的立柱垂直于地面為立柱上的滑動調(diào)節(jié)點,傘體的截面示意圖為,中點,,,,.當(dāng)點位于初始位置時,點重合(圖2).根據(jù)生活經(jīng)驗,當(dāng)太陽光線與垂直時,遮陽效果最佳.

(1)上午10:00時,太陽光線與地面的夾角為(圖3),為使遮陽效果最佳,點需從上調(diào)多少距離?(結(jié)果精確到

(2)中午12:00時,太陽光線與地面垂直(圖4),為使遮陽效果最佳,點在(1)的基礎(chǔ)上還需上調(diào)多少距離?(結(jié)果精確到

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強學(xué)生的身體素質(zhì),教育行政部門規(guī)定每位學(xué)生每天參加戶外活動的平均時間不少于1小時. 為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計圖,

請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?

(2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;

(3)戶外活動時間的眾數(shù)和中位數(shù)分別是多少?

(4)若該市共有20000名學(xué)生,大約有多少學(xué)生戶外活動的平均時間符合要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,O為對角線BD的中點,EF經(jīng)過點O分別交ADBCE、F兩點,

1)如圖1,求證:AECF

2)如圖2,若EFBD,∠AEB60°,請你直接寫出與DEDE除外)相等的所有線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程

求證:該方程必有兩個實數(shù)根;

設(shè)方程的兩個實數(shù)根分別是,若是關(guān)于x的函數(shù),且,其中,求這個函數(shù)的解析式;

設(shè),若該一元二次方程只有整數(shù)根,且k是小于0的整數(shù)結(jié)合函數(shù)的圖象回答:當(dāng)自變量x滿足什么條件時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形紙片ABCD中,,將紙片沿對角線BD剪開,再將沿射線的方向平移得到.當(dāng)是直角三角形時,平移的距離為___

查看答案和解析>>

同步練習(xí)冊答案