【題目】如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合,若BC=3,則折痕CE的長(zhǎng)為( )
A.2
B.
C.
D.6
【答案】A
【解析】解:∵△CEO是△CEB翻折而成,
∴BC=OC,BE=OE,∠B=∠COE=90°,
∴EO⊥AC,
∵O是矩形ABCD的中心,
∴OE是AC的垂直平分線,AC=2BC=2×3=6,
∴AE=CE,
在Rt△ABC中,AC2=AB2+BC2 , 即62=AB2+32 , 解得AB=3 ,
在Rt△AOE中,設(shè)OE=x,則AE=3 ﹣x,
AE2=AO2+OE2 , 即(3 ﹣x)2=32+x2 , 解得x= ,
∴AE=EC=3 ﹣ =2 .
故選:A.
【考點(diǎn)精析】本題主要考查了翻折變換(折疊問題)的相關(guān)知識(shí)點(diǎn),需要掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,黑甲殼蟲從點(diǎn)A出發(fā),白甲殼蟲從點(diǎn)C1出發(fā),它們以相同的速度分別沿棱向前爬行.黑甲殼蟲爬行的路線是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲殼蟲爬行的路線是:C1C→CB→BB1→B1C1→C1C→CB…,那么當(dāng)黑、白兩個(gè)甲殼蟲各爬行完第2018條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的最短路程的平方是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c分別交x軸于A(4,0)、B(﹣1,0),交y軸于點(diǎn)C(0,﹣3),過點(diǎn)A的直線y=﹣ x+3交拋物線于另一點(diǎn)D.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P位x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q在線段AC上,且Q到x軸的距離為 ,連接PC、PQ,當(dāng)△PCQ的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的結(jié)論下,連接PD,在平面內(nèi)是否存在△A1P1D1 , 使△A1P1D1≌△APD(點(diǎn)A1、P1、D1的對(duì)應(yīng)點(diǎn)分別是A、P、D,A1P1平行于y軸,點(diǎn)P1在點(diǎn)A1上方),且△A1P1D1的兩個(gè)頂點(diǎn)恰好落在拋物線上?若存在,請(qǐng)求出點(diǎn)A1的橫坐標(biāo)m,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(jí)(3)班開展了手工制作競(jìng)賽,每名同學(xué)都需在規(guī)定時(shí)間內(nèi)完成一件手工作品.陳莉同學(xué)在制作手工作品時(shí)的第一、二個(gè)步驟是:①如圖17,先裁下一張長(zhǎng)BC=20 cm,寬AB=16 cm 的長(zhǎng)方形紙片ABCD;②將紙片沿著直線AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處.請(qǐng)你根據(jù)步驟①②解答下列問題:
(1)找出圖中∠FEC的余角;
(2)求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,E為BC上的一點(diǎn),BE=2,F(xiàn)為AB上的一點(diǎn),AF=3,P為AC上一點(diǎn),則PF+PE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對(duì)面一樓房CD的樓底C,樓頂D處,測(cè)得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)將一張長(zhǎng)方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.
(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點(diǎn)C,作CD⊥AD,垂足為D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE= 時(shí),求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com