【題目】如圖,四邊形ABCD中,∠BAC=∠BDC,
(1)求證:△ADE∽△CEB;
(2)已知△ABC是等邊三角形,求證:
① ;
② .
【答案】(1)證明見解析;(2)①證明見解析;②證明見解析
【解析】
(1)證明△BEA∽△DEC,從而得到,再結(jié)合∠AED=∠BEC即可證明△ADE∽△BCE;
(2)①利用等邊三角形的性質(zhì)得到∠ACB=∠BDC,結(jié)合∠DBC=∠DBC得到△BEC∽△BCD,根據(jù)相似的性質(zhì)即可得到結(jié)果;
②在DB上取點(diǎn)F,使DF=DC,證明△CDF是等邊三角形,再證明△DCA≌△FCB,則有AD=BF,繼而得到結(jié)論.
解:(1)證明:∵∠BAC=∠BDC,∠BEA =∠DEC
∴△BEA∽△DEC
∴ ,
即
又∵∠AED=∠BEC
∴△ADE∽△BCE;
(2)證明:①∵△ABC是等邊三角形
∴∠ACB=∠BAC=
∵∠BAC=∠BDC
∴∠ACB=∠BDC=
又∵∠DBC=∠DBC
∴△BEC∽△BCD
∴
∴
②在DB上取點(diǎn)F,使DF=DC
∵∠BDC=∠ACB=
∴△CDF是等邊三角形
∴CD=CF,∠DCF=
∴∠DCF-∠ACF=∠ACB-∠ACF
∴∠DCA=∠FCB
由△ABC是等邊三角形得:AC=BC
∴△DCA≌△FCB
∴AD=BF
∴BD=DF+BF=CD+AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,為邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),以為邊長(zhǎng)作正方形,連接,則的面積的最大值等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)有 名學(xué)生,在體育考試前隨機(jī)抽取部分學(xué)生進(jìn)行跳繩測(cè)試,根據(jù)測(cè)試成績(jī)制作了下面兩個(gè)不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次參加跳繩測(cè)試的學(xué)生人數(shù)為 ,圖 中 的值為 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校九年級(jí)跳繩測(cè)試中得 分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與鈾交于,與軸交于拋物線的頂點(diǎn)為直線過交軸于.
(1)寫出的坐標(biāo)和直線的解析式;
(2)是線段上的動(dòng)點(diǎn)(不與重合),軸于設(shè)四邊形的面積為,求與之間的兩數(shù)關(guān)系式,并求的最大值;
(3)點(diǎn)在軸的正半軸上運(yùn)動(dòng),過作軸的平行線,交直線于交拋物線于連接,將沿翻轉(zhuǎn),的對(duì)應(yīng)點(diǎn)為.在圖2中探究:是否存在點(diǎn);使得恰好落在軸?若存在,請(qǐng)求出的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形ABCD是邊長(zhǎng)為5的菱形,頂點(diǎn)A.C.D均在坐標(biāo)軸上,sinB=.
(1)求過A,C,D三點(diǎn)的拋物線的解析式;
(2)記直線AB的解析式為y1=mx+n,(1)中拋物線的解析式為y2=ax2+bx+c,求當(dāng)y1>y2時(shí),自變量x的取值范圍;
(3)設(shè)直線AB與(1)中拋物線的另一個(gè)交點(diǎn)為E,P點(diǎn)為拋物線上A,E兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn),且直線PE交x軸于點(diǎn)F,問:當(dāng)P點(diǎn)在何處時(shí),△PAE的面積最大?并求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)E在BC邊上,且CA=CE,過A,C,E三點(diǎn)的⊙O交AB于另一點(diǎn)F,作直徑AD,連結(jié)DE并延長(zhǎng)交AB于點(diǎn)G,連結(jié)CD,CF.
(1)求證:四邊形DCFG是平行四邊形;(2)當(dāng)BE=4,CD=AB時(shí),求⊙O的直徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,P是矩形內(nèi)一點(diǎn),沿、、、把這個(gè)矩形剪開,然后把兩個(gè)陰影三角形拼成一個(gè)四邊形,則這個(gè)四邊形的面積為_________;這個(gè)四邊形周長(zhǎng)的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:菱形ABCD,AB=4m,∠B=60°,點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),沿線段BC、CD以1m/s的速度向終點(diǎn)C、D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)如圖1,連接AP、AQ、PQ,試判斷△APQ的形狀,并說明理由
(2)如圖2,當(dāng)t=1.5秒時(shí),連接AC,與PQ相交于點(diǎn)K.求AK的長(zhǎng).
(3)如圖3,連接AC交BD于點(diǎn)O,當(dāng)P、Q分別運(yùn)動(dòng)到點(diǎn)C、D時(shí),將∠APQ沿射線CA方向平移,使點(diǎn)P與點(diǎn)O重合,然后以點(diǎn)O為旋轉(zhuǎn)中心將∠APQ旋轉(zhuǎn)一定的角度,使角的兩邊分別于CD、AD交于S、K點(diǎn),再以OS為一邊在∠SOC內(nèi)作∠SOT,使∠SOT=∠BDC,OT邊交BC的延長(zhǎng)線于點(diǎn)T,若BT=4.8,求AK的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰Rt△ABC與等腰Rt△CDE關(guān)于原點(diǎn)O成位似關(guān)系,相似比為1:3,∠ACB=∠CED=90°,A、C、E是x軸正半軸上的點(diǎn),B、D是第一象限的點(diǎn),BC=2,則點(diǎn)D的坐標(biāo)是( )
A.(9,6)B.(8,6)C.(6,9)D.(6,8)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com