【題目】右圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為( )
A. 5πcm2 B. 10πcm2 C. 15πcm2 D. 20πcm2
【答案】B
【解析】分析:根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=2S扇形AOD,根據(jù)等腰三角形的性質(zhì)得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=72°,于是得到結(jié)論.
詳解:
:∵AC與BD是⊙O的兩條直徑,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四邊形ABCD是矩形,
∴△ABO與△CDO的面積的和=△AOD與△BOC的面積的和,
∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=2S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=72°,
∴圖中陰影部分的面積=2×=10π.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a≠0)經(jīng)過A(-1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在拋物線的對(duì)稱軸上,當(dāng)△ACP的周長最小時(shí),求出點(diǎn)P的坐標(biāo);
(3) 點(diǎn)N在拋物線上,點(diǎn)M在拋物線的對(duì)稱軸上,是否存在以點(diǎn)N為直角頂點(diǎn)的Rt△DNM與Rt△BOC相似,若存在,請(qǐng)求出所有符合條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線T1:y=-x2-2x+3,T2:y=x2-2x+5,其中拋物線T1與x 軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).P點(diǎn)是x軸上一個(gè)動(dòng)點(diǎn),過P點(diǎn)并且垂直于x軸的直線與拋物線T1和T2分別相交于N、M兩點(diǎn).設(shè)P點(diǎn)的橫坐標(biāo)為t.
(1)用含t的代數(shù)式表示線段MN的長;當(dāng)t為何值時(shí),線段MN有最小值,并求出此最小值;
(2)隨著P點(diǎn)運(yùn)動(dòng),P、M、N三點(diǎn)的位置也發(fā)生變化.問當(dāng)t何值時(shí),其中一點(diǎn)是另外兩點(diǎn)連接線段的中點(diǎn)?
(3)將拋物線T1平移, A點(diǎn)的對(duì)應(yīng)點(diǎn)為A'(m-3,n),其中≤m≤,且平移后的拋物線仍經(jīng)過C點(diǎn),求平移后拋物線頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算: ﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化簡,再求值 (a2﹣b2),其中a=,b=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品根據(jù)以往銷售經(jīng)驗(yàn),每天的售價(jià)與銷售量之間有如下表的關(guān)系:
每千克售價(jià)(元) | 38 | 37 | 36 | 35 | … | 20 |
每天銷售量(千克) | 50 | 52 | 54 | 56 | … | 86 |
設(shè)當(dāng)單價(jià)從38元/千克下調(diào)到x元時(shí),銷售量為y千克,已知y與x之間的函數(shù)關(guān)系是一次函數(shù).
(1)求y與x的函數(shù)解析式;
(2)如果某商品的成本價(jià)是20元/千克,為使某一天的利潤為780元,那么這一天的銷售價(jià)應(yīng)為多少元?(利潤=銷售總金額﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在三角形ABC中,D是BC上一點(diǎn),且∠CDA=∠CAB.(注:三角形內(nèi)角和等于180°)
(1)求證:∠CDA=∠DAB+∠DBA;
(2)如圖2,MN是經(jīng)過點(diǎn)D的一條直線,若直線MN交AC邊于點(diǎn)E,且∠CDE=∠CAD.求證:∠AED+∠EAB=180°;
(3)將圖2中的直線MN繞點(diǎn)D旋轉(zhuǎn),使它與射線AB交于點(diǎn)P(點(diǎn)P不與點(diǎn)A,B重合).在圖3中畫出直線MN,并用等式表示∠CAD,∠BDP,∠BPD這三個(gè)角之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,學(xué)校從全校30個(gè)班中隨機(jī)抽取了4個(gè)班 (用A,B,C,D表示),對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息,回答下列問題:
(1)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整,并估計(jì)全校共征集多少件作品?
(2)如果全校征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=58°,OD平分∠AOC,∠DOE=90°.
(1)求出∠BOD的度數(shù);
(2)請(qǐng)通過計(jì)算說明:OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)、、拋物線過A、C兩點(diǎn).
直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng)速度均為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒過點(diǎn)P作交AC于點(diǎn)E.
過點(diǎn)E作于點(diǎn)F,交拋物線于點(diǎn)當(dāng)t為何值時(shí),線段EG最長?
連接在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com