下面的說法中錯誤有(  )
①兩邊與第三邊上的高對應(yīng)相等的兩個三角形全等
②兩邊與其中一邊上的高對應(yīng)相等的兩個三角形全等
③兩邊及其夾角的平分線對應(yīng)相等的兩個三角形全等
④兩邊與其中一邊的對角對應(yīng)相等的兩個鈍角三角形全等.
A.1個B.2個C.3個D.4個
①如圖,

△ABC與△ABC′中,AB=AB,AC=AC′,高AD相同,但是,△ABC與△ABC′不全等,故選項錯誤;
②有兩邊及其中一邊上的高對應(yīng)相等的兩個三角形不一定全等,
如圖:△ABC和△ACD,的邊AC=AC,BC=CD,高AE=AE,

但△ABC和△ACD不全等,故選項錯誤;

作DEAB,交BC于E,作D′E′A′B′,交B′C′于E′,
則∠EDB=∠ABD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠DBE=∠EDB,
∴DE=BE,
∵DEAB,
∴△EDC△BAC,
DE
AB
=
CE
BC
,
DE
AB
=
BC-DE
BC
,
BC
AB
=
BC-DE
DE
=
BC
DE
-1,
同理
B′C′
A′B′
=
B′C′
D′E′
-1,
∵AB=A′B′,BC=B′C′,
∴DE=D′E′,
∴BE=B′E′,
∴△BDE≌△B′D′E′(SSS),
∴∠DBE=∠D′B′E′,
∵BD平分∠ABC,B′D′平分∠A′B′C′,
∴∠ABC=∠A′B′C′,
∵在△ABC和△A′B′C′中,
AB=A′B′
∠ABC=∠A′B′C′
BC=B′C′
,
∴△ABC≌△A′B′C′(SAS),∴③正確;
④根據(jù)兩邊與其中一邊的對角對應(yīng)相等的兩個鈍角三角形一定全等,正確.
故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AD⊥BC,D為BC的中點,則△ABD≌△______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,點E為AB的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPE與△CQP是否全等?請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPE與△CQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在如圖所示的4×4正方形網(wǎng)格中.∠1+∠2+∠3+∠4+∠5+∠6+∠7=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖在△ABC和△DCB中∠ACB=∠DBC,當(dāng)添加條件:______時,△ABC≌△DCB(只需填一個).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則△______≌△______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點E,C在線段BF上,在下列條件中①BE=CF,②ABDE,③AC=DF,④AB=DE任選三個作為已知條件,余下一個作為結(jié)論,則有很多正確的命題,如①③④?②等等,
(1)仿照上面的寫法寫出所有正確的結(jié)論;
(2)選擇其中一個結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AD平分∠BAC.
求證:△ABD≌△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面內(nèi)取一點O,過點O作兩條夾角為60°的數(shù)軸,使它們以點O為公共原點且具有相同的單位長度,這樣在平面內(nèi)建立的坐標系稱為斜坐標系,我們把水平放置的數(shù)軸稱為橫軸(記作a軸),將斜向放置的數(shù)軸稱為斜軸(記作b軸).類似
于直角坐標系,對于斜坐標平面內(nèi)的任意一點P,過點P分別作b軸、a軸的平行線交a軸、b軸于點M、N,若點M、N分別在a軸、b軸上所對應(yīng)的實數(shù)為m與n,則稱有序?qū)崝?shù)對(m,n)為點P的坐標.可知建立了斜坐標系的平面內(nèi)任意一個點P與有序?qū)崝?shù)對(m,n)之間是相互唯一確定的.

(1)請寫出圖2(其中虛線均平行于a軸或b軸)中點P的坐標,并在圖中標出點Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標系中點A(1,4)、B(1,-1)、C(6,-1).

①判斷△ABC的形狀,并簡述理由;
②如果點D在邊BC上,且其坐標為(2.5,-1),試問:在邊BC上是否存在點E使△ACE與△ABD相全等?如有,請寫出點E的坐標,并說明它們?nèi)鹊睦碛;如沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案