【題目】據某市地產數據研究院的數據顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產數據研究院研究發(fā)現,3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關關系,試建立y關于x的回歸方程(系數精確到0.01),政府若不調控,依次相關關系預測第12月份該市新建住宅銷售均價;
(Ⅱ)地產數據研究院在2016年的12個月份中,隨機抽取三個月份的數據作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數為X,求X的分布列和數學期望.
參考數據: =25, =5.36, =0.64
回歸方程 = x+ 中斜率和截距的最小二乘估計公式分別為:
= , = ﹣ .
【答案】解:(Ⅰ)由題意
月份x | 3 | 4 | 5 | 6 | 7 |
均價y | 0.95 | 0.98 | 1.11 | 1.12 | 1.20 |
=5, =1.072, =10,
∴ = =0.064, = ﹣ =0.752,
∴從3月到6月,y關于x的回歸方程為y=0.06x+0.75,
x=12時,y=1.47.即可預測第12月份該市新建住宅銷售均價為1.47萬元/平方米;
(Ⅱ)X的取值為1,2,3,
P(X=1)= = ,P(X=3)= = ,P(X=2)=1﹣P(X=1)﹣P(X=3)= ,
X的分布列為
X | 1 | 2 | 3 |
P |
|
|
|
E(X)=1× +2× +3× =
【解析】(Ⅰ)求出回歸系數,可得回歸方程,即可預測第12月份該市新建住宅銷售均價;(Ⅱ)X的取值為1,2,3,求出相應的概率,即可求X的分布列和數學期望.
科目:初中數學 來源: 題型:
【題目】已知反比例函數y=的圖象的一支位于第一象限.
(1)判斷該函數圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標原點,點A在該反比例函數位于第一象限的圖象上,點B與點A關于x軸對稱,若△OAB的面積為6,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年二十國集團領導人峰會(簡稱“G20峰會”)于9月4日至5日在浙江杭州召開,為保證會議期間交通暢通,杭州市已發(fā)布9月1日至7日為“G20峰會”調休期間.據報道對于杭州市民:浙江省旅游局聯合11個市開展一系列旅游惠民活動,活動內容為:“本省游”、“黃山游”、“黔東南游”,某旅游公司為了解群眾出游情況,擬采用分層抽樣的方法從有意愿“本省游”、“黃山游”、“黔東南游”這三個區(qū)域旅游的群眾中抽取7人進行某項調查,已知有意愿參加“本省游”、“黃山游”、“黔東南游”的群眾分別有360,540,360人.
(1)求從“本省游”、“黃山游”、“黔東南游”,三個區(qū)域旅游的群眾分別抽取的人數;
(2)若從抽得的7人中隨機抽取2人進行調查,用列舉法計算這2人中至少有1人有意愿參加“本省游”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,底面是正三角形,三棱柱的高為 ,若P是△A1B1C1中心,且三棱柱的體積為 ,則PA與平面ABC所成的角大小是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線l的極坐標方程為ρsin(θ+ )= ,圓C的參數方程為: (其中θ為參數).
(1)判斷直線l與圓C的位置關系;
(2)若橢圓的參數方程為 (φ為參數),過圓C的圓心且與直線l垂直的直線l′與橢圓相交于A,B兩點,求|AB|.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知數列{an}中,a1<0,an+1= ,數列{bn}滿足:bn=nan(n∈N*),設Sn為數列{bn}的前n項和,當n=7時Sn有最小值,則a1的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】襄陽農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數,得到如下數據:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數y(顆) | 23 | 26 | 32 | 26 | 16 |
襄陽農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰的2天數據的概率;
(2)若選取的是12月1日與12月5日這兩組數據,情根據12月2日至12月4日的數據,求y關于x的線性回歸方程 = x+ ;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠? 注: = = , = ﹣ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com