精英家教網 > 初中數學 > 題目詳情

【題目】如圖,P為正方形ABCD的對角線AC上任意一點,PE⊥ABE,PF⊥BCF,AC=則四邊形PEBF的周長為( )

A. B. 2 C. 2 D. 1

【答案】C

【解析】

由題中條件可得四邊形FBFP為矩形,又點P在對角線上,可得PE=AE,進而可求其周長等于正方形的邊長的2倍,根據勾股定理,可得四邊形的邊長為1,所以四邊形PEBF的周長為2.

由題意可得,四邊形EBFP為矩形,所以BF=PE,PF=BE,又點P在對角線AC上,BAC=45°,所以AE=PE,所以四邊形PEBF的周長為BE+EP+PF+BF=BE+AE+PF+AE=2AB.

AC=AB=BC,

∴2AB2=AC2,2AB2=2,

AB=1,

四邊形PEBF的周長為2AB=2.

故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】A1、A2、A3、…、An(n為正整數)都在數軸上.點A2在點A1的左邊,且A1A2=1;點A3在點A2的右邊,且A2A3=2;點A4在點A3的左邊,且A3A4=3;…,點A2018在點A2017的左邊,且A2017A2018=2017,若點A2018所表示的數2018,則點A1所表示的數為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】臨海市初中第三教研區(qū)為了豐富學生課余活動,組織同學開展每周一次的社團活動,活動內容有足球、跳繩、跳舞、籃球、象棋共5項,為方便組織,規(guī)定每位同學只能報一項活動,根據報名繪制了如下兩幅尚不完整的統(tǒng)計圖,解答下列問題:
(1)將條形統(tǒng)計圖補充完整;
(2)寫出扇形統(tǒng)計圖中的m和n的值;
(3)瑤瑤和欣欣兩名同學對足球、籃球、象棋三項活動都很感興趣,決定從三項活動中隨機抽取一項參加,利用樹狀圖或列表表示所有可能結果,并求出兩人參加同一項目的概率;
(4)由于場地限制,參加足球活動的學生人數不能超過參加其余活動學生人數的 ,那么至少幾位同學需要從參加足球活動調整到參加其余活動?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地電話撥號上網有兩種收費方式,用戶可以任選其一:

(A)計時制,0.08/分;

(B)包月制,50/月(限一部個人住宅電話上網);

此外,每種上網方式都附加通信費0.02/分.

(1)某用戶某月上網時間為x分鐘,則該用戶在A、B兩種收費方式下應支付費用各多少元?

(2)如果一個月內上網200分鐘和300分鐘,按兩種收費方式各需交費多少元?

(3)是否存在某一時間,會出現兩種收費方式一樣的情況?如果存在,請求出這時的上網時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DE是過點A的直線,BDDE于D,CEDE于點E;

(1)若B、C在DE的同側(如圖所示)且AD=CE.求證:ABAC;

(2)若B、C在DE的兩側(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,ADABC的一條角平分線,ANABC外角∠CAM的平分線,CEAN,垂足為點E.

(1)求證:四邊形ADCE為矩形;

(2)連接DE,交AC于點F,請判斷四邊形ABDE的形狀,并證明;

(3)線段DFAB有怎樣的關系?請直接寫出你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知反比例函數y=﹣ 的圖象與直線y=kx(k<0)相交于點A、B,以AB為底作等腰三角形,使∠ACB=120°,且點C的位置隨著k的不同取值而發(fā)生變化,但點C始終在某一函數圖象上,則這個圖象所對應的函數解析式為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點(M不與B、C重合),過點CCN垂直DMAB于點N,連結OM、ON、MN.下列五個結論:①△CNB≌△DMC;;ONOM;AB=2,則的最小值是1;.其中正確結論是_________.(只填番號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數與一次函數的圖象交于點A(-2,6)、點B,1).

(1)求反比例函數與一次函數的表達式;

(2)Ey軸上一個動點,若SAEB=5,求點E的坐標.

(3)將一次函數的圖象沿軸向下平移n個單位,使平移后的圖象與反比例函數的圖象有且只有一個交點,求n的值.

查看答案和解析>>

同步練習冊答案