【題目】如圖,已知A(﹣4,m),B2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求AOB的面積.

3)根據(jù)圖像直接寫出使成立的x的取值范圍

【答案】1)反比例函數(shù)的解析式為 y=,一次函數(shù)的解析式為y=-x-2;(26;(3x2-4x0

【解析】

1)根據(jù)點(diǎn)B坐標(biāo)利用待定系數(shù)法可求出反比例函數(shù)解析式,然后根據(jù)反比例函數(shù)解析式求出點(diǎn)A的坐標(biāo),再利用待定系數(shù)法求一次函數(shù)的解析式即可;

2)首先求出點(diǎn)C坐標(biāo),然后利用三角形面積公式計(jì)算即可;

3)找出一次函數(shù)圖象在反比例函數(shù)圖象下方時(shí)對(duì)應(yīng)的x的取值范圍即可.

1)把B2,-4)代入反比例函數(shù),得到:,解得n=8

∴反比例函數(shù)解析式為:;

∵點(diǎn)A(﹣4,m)在反比例函數(shù)的圖象上,

,解得:,

∴點(diǎn)A的坐標(biāo)為(-4,2

將點(diǎn)A-4,2)和點(diǎn)B2,-4)代入y=kx+b得:,

解得:,

∴一次函數(shù)的解析式為y=-x-2

2)當(dāng)y=-x-2=0時(shí),解得:x=-2,

C-2,0),

A-4,2),B2-4),

SAOBSAOC+ SBOC;

3,即,

由圖象可得,x的取值范圍為:x2-4x0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,RtABO,B=90°,OAB=30°,OA=3.以點(diǎn)O為原點(diǎn),斜邊OA所在直線為x,建立平面直角坐標(biāo)系,以點(diǎn)P(4,0)為圓心,PA長為半徑畫圓,Px軸的另一交點(diǎn)為N,點(diǎn)M在⊙P,且滿足∠MPN=60°.P以每秒1個(gè)單位長度的速度沿x軸向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts,解答下列問題:

(1)運(yùn)動(dòng)過程中當(dāng)點(diǎn)A在⊙P內(nèi)時(shí),t的取值范圍是 ;

(2)當(dāng)⊙PABO的邊相切時(shí),求點(diǎn)P的坐標(biāo);

(3)當(dāng)弧MNRtABO的邊有兩個(gè)交點(diǎn)時(shí),請(qǐng)你直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的邊BC= ,且ABC內(nèi)接于半徑為2的⊙O,則∠A的度數(shù)是(

A.60°B.120°C.60°120°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,),以原點(diǎn)O為中心,將點(diǎn)A順時(shí)針旋轉(zhuǎn)150°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)為( )

A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面關(guān)于x的方程中:①ax2+x+2=0;3(x﹣9)2﹣(x+1)2=1;x+3=;(a2+a+1)x2﹣a=0;=x﹣1.一元二次方程的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧,分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心,大于MN長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長,交BC于點(diǎn)D,則下列四個(gè)結(jié)論中:①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的中垂線上;④SDACSABC=13.正確的有(

A.只有①②③B.只有①②④C.只有①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與x軸交于點(diǎn)A,與y軸交于B點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),在第一象限的拋物線上取一點(diǎn)D,過點(diǎn)DDCx軸于點(diǎn)C,交直線AB于點(diǎn)E

1)求拋物線的函數(shù)表達(dá)式

2)是否存在點(diǎn)D,使得BDEACE相似?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說明理由;

3)如圖2F是第一象限內(nèi)拋物線上的動(dòng)點(diǎn)(不與點(diǎn)D重合),點(diǎn)G是線段AB上的動(dòng)點(diǎn).連接DF,FG,當(dāng)四邊形DEGF是平行四邊形且周長最大時(shí),請(qǐng)直接寫出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C圓外一點(diǎn),OC垂直于弦AD,垂足為點(diǎn)F,OC交⊙O于點(diǎn)E,連接AC,∠BED=∠C

1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;

2)是否存在BE平分∠OED的情況?如果存在,求此時(shí)∠C的度數(shù);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點(diǎn)D在線段BC上運(yùn)動(dòng).試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC4,BC3CDx,求線段CP的長.(用含x的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案