【題目】如圖, 已知點(diǎn)A、點(diǎn)B是直線上的兩點(diǎn),AB =12厘米,點(diǎn)C在線段AB上,且AC=8厘米.點(diǎn)P、點(diǎn)Q是直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P的速度為1厘米/秒,點(diǎn)Q的速度為2厘米/秒.點(diǎn)P、Q分別從點(diǎn)C、點(diǎn)B同時(shí)出發(fā),在直線上運(yùn)動(dòng),則經(jīng)過(guò) 秒時(shí)線段PQ的長(zhǎng)為5厘米.
【答案】,1,3,9
【解析】
試題分析:設(shè)運(yùn)動(dòng)時(shí)間為t秒.因?yàn)锳B=12cm,AC=8cm,所以可得BC=4cm,
圖1,,當(dāng)點(diǎn)P、Q沿射線AB方向運(yùn)動(dòng),若點(diǎn)Q在點(diǎn)P的前面,
得:2t+4-t=5,
解得t=1,
圖1
圖2,當(dāng)點(diǎn)P、Q沿射線BA方向運(yùn)動(dòng),若點(diǎn)Q在點(diǎn)P前面,
得:2t-4-t=5,
解得t=9.
圖2
圖5,當(dāng)點(diǎn)P、Q在直線上相向運(yùn)動(dòng),
得:2t+t-4=5,
解得t=3.
圖3
圖4,當(dāng)點(diǎn)P、Q在直線上反向運(yùn)動(dòng),點(diǎn)P向左、點(diǎn)Q向右,
得:t+2t+4=5,
解得t=.
圖4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校運(yùn)動(dòng)會(huì)需購(gòu)買(mǎi)A,B兩種獎(jiǎng)品,若購(gòu)買(mǎi)A種獎(jiǎng)品3件和B種獎(jiǎng)品2件,共需60元;若購(gòu)買(mǎi)A種獎(jiǎng)品5件和B種獎(jiǎng)品3件,共需95元.
(1)求A、B兩種獎(jiǎng)品的單價(jià)各是多少元?
(2)學(xué)校計(jì)劃購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件,購(gòu)買(mǎi)費(fèi)用不超過(guò)1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,設(shè)購(gòu)買(mǎi)A種獎(jiǎng)品m件,購(gòu)買(mǎi)費(fèi)用為W元,寫(xiě)出W(元)與m(件)之間的函數(shù)關(guān)系式.求出自變量m的取值范圍,并確定最少費(fèi)用W的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家距離學(xué)校8千米,今天早晨,小明騎車(chē)上學(xué)途中,自行車(chē)出現(xiàn)故障,恰好路邊有便民服務(wù)點(diǎn),幾分鐘后車(chē)修好了,他增加速度騎車(chē)到校.我們根據(jù)小明的這段經(jīng)歷畫(huà)了一幅圖象(如圖),該圖描繪了小明行的路程s與他所用的時(shí)間t之間的關(guān)系.
請(qǐng)根據(jù)圖象,解答下列問(wèn)題:
(1)小明行了多少千米時(shí),自行車(chē)出現(xiàn)故障?修車(chē)用了幾分鐘?
(2)小明共用了多少時(shí)間到學(xué)校的?
(3)如果自行車(chē)未出現(xiàn)故障,小明一直用修車(chē)前的速度行駛,那么他比實(shí)際情況早到或晚到多少分鐘?(結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫(huà)出平移后的△DEF,并求△DEF的面積=
(2)若連接AD、CF,則這兩條線段之間的關(guān)系是_________________;
(3)請(qǐng)?jiān)贏B上找一點(diǎn)P,使得線段CP平分△ABC的面積,在圖上作出線段CP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖表示玲玲騎自行車(chē)離家的距離與時(shí)間的關(guān)系.她9點(diǎn)離開(kāi)家,15點(diǎn)回到家,請(qǐng)根據(jù)圖象回答下列問(wèn)題:
(1)玲玲到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?她離家多遠(yuǎn)?
(2)她何時(shí)開(kāi)始第一次休息?休息了多長(zhǎng)時(shí)間?
(3)第一次休息時(shí),她離家多遠(yuǎn)?
(4)11點(diǎn)~12點(diǎn)她騎車(chē)前進(jìn)了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC與BD相交于點(diǎn)O,AB∥CD,AB=CD,則圖中的全等三角形共有( )
A. 1對(duì)B. 2對(duì)C. 3對(duì)D. 4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)表中的信息判斷,下列語(yǔ)句中正確的是( )
x | 15 | 15.1 | 15.2 | 15.3 | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16 |
x2 | 225 | 228.01 | 231.04 | 234.09 | 237.16 | 240.25 | 243.36 | 246.49 | 249.64 | 252.81 | 256 |
A.
B.235的算術(shù)平方根比15.3小
C.只有3個(gè)正整數(shù)n滿足15.5
D.根據(jù)表中數(shù)據(jù)的變化趨勢(shì),可以推斷出16.12將比256增大3.19
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:給定兩個(gè)不等式組和,若不等式組的任意一個(gè)解,都是不等式組的一個(gè)解,則稱不等式組為不等式組的“子集”例如:不等式組:是:的“子集”.
(1)若不等式組:,,其中不等式組_________是不等式組的“子集”(填或);
(2)若關(guān)于的不等式組是不等式組的“子集”,則的取值范圍是________;
(3)已知為互不相等的整數(shù),其中,,下列三個(gè)不等式組:,,滿足:是的“子集”且是的“子集”,則的值為__________;
(4)已知不等式組有解,且是不等式組的“子集”,請(qǐng)寫(xiě)出,滿足的條件:________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG、DE.
n
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角(0°< <360°)得到正方形OE’F’G’,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG’是直角時(shí),求 的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF’長(zhǎng)的最大值和此時(shí) 的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com